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History of (small-angle) scattering

◮ “Even the ancient greeks. . . ”

◮ Scattering: XVII-XIX. century (Huygens, Newton, Young,
Fresnel. . . )

◮ X-rays: 1895 (Wilhelm Konrad Röntgen)

◮ X-ray diffraction on crystals: W.H. és W.L. Bragg (1912), M. von
Laue, P. Debye, P. Scherrer. . . (-1930)

◮ First observation of small-angle scattering: P. Krishnamurti, B.E.
Warren (kb. 1930)

◮ Mathematical formalism and theory of small-angle scattering: André
Guinier, Peter Debye, Otto Kratky, Günther Porod, Rolf Hosemann,
Vittorio Luzzati (1940-1960)



The principle of scattering

Primary beam

Sample
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SAXS vs. WAXS

◮ Principle of scattering: probe particles → interaction with the
structure → deflection → detection → structure determination

SampleX-ray Small-angle scattering

Wide-angle scattering (diffraction)

◮ Measurement: the “intensity” of radiation deflected in different
directions

◮ Strong forward scattering (logarithmic scale!)

◮ Wide-angle scattering: Bragg equation (cf. previous lecture)

◮ Small-angle scattering: . . .



Small- and wide-angle X-ray scattering

Scattering of a spherical nanocrystallite (simple cubic lattice)

◮ Wide-angle scattering: crystal structure

◮ Small-angle scattering: the overall size of the crystallite
◮ Small-angle scattering is blind on the atomic level: equivalence of

homogeneous and discrete atomic structures
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Small-angle scattering

◮ Small-Angle X-ray Scattering – SAXS
◮ Elastic scattering of X-rays on electrons
◮ Measurement: “intensity” versus the scattering angle
◮ Results: electron-density inhomogeneities on the 1-100 length scale
◮ But: indirect results, difficult to interpret (/)
◮ Typical experimental conditions:

◮ Transmission geometry
◮ High intensity, nearly point-collimated beam
◮ Two-dimensional position sensitive detector
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Scattering pattern – scattering curve

◮ Scattering pattern: matrix of incidence
counts

◮ Numerical values in the pixels: the
number of the photons received

◮ Each pixel has a corresponding
scattering angle

◮ Scattering curve
◮ The same information in a more

tractable form
◮ Obtained by azimuthally averaging

the scattering pattern:

1. Grouping of pixels corresponding
to the same scattering angle

2. Averaging of the intensities

◮ Dependent variable: intensity
(“count rate”)

◮ Independent variable: scattering
variable (“distance from the center”)



Scattering cross-section

◮ The sample under investigation (scatterer)

◮ Incident particle current density: jin = Nin (A · t) [cm−2 s−1]

◮ Total scattered particle current: Iout = Nout t [s−1]

◮ Scattering cross-section: Σ ≡ Iout jin = A · Nout Nin [cm2]

◮ differential scattering cross-section: dΣ dΩ [cm2 sr−1]

◮ Normalized to unit sample volume: d
dΩ ≡ 1

V
dΣ
dΩ [cm−1 sr−1]
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The scattering variable

◮ The natural variable of the intensity is the scattering vector:

~q ≡ ~k2θ − ~k0

[

~s ≡ ~S2θ − ~S0 = ~q/(2π)
]

i.e. the vectorial difference of the wave vectors of the scattered and
the incident radiation

◮ [Wave vector: points in the direction of wave propagation,
magnitude is 2π/λ]

◮ Physical meaning: the momentum acquired by the photon upon
scattering (→ “momentum transfer”)

 |k0|=2π/λ

 |k
2θ
|=

2π/
λ

|q
|=

4π
 sinθ

 / λ

 |k0|=2π/λ
2θ
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◮ Magnitude: q = |~q| = 4π sin θ
λ

≈
small angles

4πθ/λ [s = 2 sin θ/λ])

◮ Bragg-equation: q = 2πn/d n ∈ Z [s = n/d ]



The scattering contrast

◮ X-rays are scattered by electrons

◮ Scattering contrast = relative electron
density with respect to the average

◮ Only the relative electron density
counts!

◮ Small contrast: weak scattering signal
◮ Water: 333.3 e−/nm3 (homework to

calculate)
◮ SiO2 nanoparticles: 660-800 e−/nm3

◮ Proteins: 400-450 e−/nm3

◮ Determined by:
◮ Mass density of the matter (e.g. solid

copolimers)
◮ Presence of elements with high

atomic numbers
◮ Choice of solvent (mean electron

density)
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Recapitulation of the basic quantities

Intensity: or differential scattering cross-section

◮ the proportion of the particles. . .
◮ . . . incoming in a unit cross section. . .
◮ . . . over unit time. . .
◮ . . . onto a sample of unit volume. . .
◮ . . . which is scattered in a given direction. . .
◮ . . . under unit solid angle.

Scattering variable (q): or momentum transfer: characterizing the angle
dependence.

◮ Magnitude ∝ sin θ ≈ θ
◮ ~~q: the momentum acquired by the photon due to

the interaction with the sample

Scattering contrast: scattering potential of given part of the sample in
comparison with its environment

◮ This is the relative electron density in case of X-ray
scattering
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Connection between structure and scattering

◮ Scattering on the inhomogeneities of the electron density ⇒
characterization of the structure with the relative electron density
function:

∆ρ(~r) = ρ(~r) − ρ

(in the following we omit ∆!)

◮ The amplitude of the scattered radiation:

A(~q) =
y

V

ρ(~r)e−i~q~r
d

3~r

which is formally the Fourier transform of the electron density.

◮ Only the intensity can be measured: I = |A|2



Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?
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Fourier transform

◮ Fourier transformation: determination of the frequency components

◮ W rks for more components as well

◮ re sampling time: better frequency resolution (Nyquist-Shannon
sampling theorem)

◮ Even more frequency components

◮ The relative weights of the frequency components is also given

◮ “Inside the black b x”: F (ν) =
∫

f (t)e−iνtdt

◮ Can be inverted (although. . . ): f (t) = 1
2π

∫
F (ν)e itνdν
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The phase problem

◮ The Fourier transform is invertible (?!): the amplitude
unambiguously describes the scattering structure

◮ Complex quantities:
z = a + bi = Ae iφ

◮ Absolute square (this is how we get the intensity):

|z |2 = z · z∗ = Ae iφ · Ae−iφ = A2

◮ Where did the φ phase go?!

◮ Because the scattered amplitude cannot be measured, there is no
chance to fully recover the structure just from scattering.

◮ Another problem: the intensity can only be measured in a subspace
of the ~q space: only an incomplete inversion of the Fourier transform
can be done.



How big is this problem?

Idea from Saldin et. al. J. Phys.: Condens. Matter 13 (2001) 10689-10707

◮ The phase carries most of the information!
◮ The operation of taking the square root is ambiguous over the

complex plane (there are complex numbers with |z | = 1)!
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What can be done / Is this really a problem?

The scattering of vastly different structures can be undiscernible
1. Solution: determination of “robust” parameters (see later)

◮ Guinier radius
◮ Power-law exponent
◮ Porod-volume
◮ . . .

2. Solution: model fitting
◮ Choosing the specimen from a model-specimen described by given

parameters which best fits the scattering curve
◮ If the model ensemble is narrow enough, the ρ(~r) ↔ I(~q) mapping

can be unique
◮ A priori knowledge, results of other experiments are indispensable!

3. “Guessing” the phase (crystallography) or measuring it (holography)

Structures which

are compatible with

the measured data

Structures which

can be parametrized

by the model



Bragg’s law: a special case

◮ The sample is periodic (d
repeat distance)

◮ θ: incidence and exit angle

◮ Constructive interference in the
detector: the rays reflected
from neighbouring planes reach
the detector in phase

◮ Path difference: ∆s = nλ
where n ∈ N

◮ From simple geometry:
∆s = 2d sin θ

◮ 2d sin θ = nλ

◮
4π
λ

sin θ = 2π
d

n

◮ q =
2π

d
n

θ

θθ

θ

Δs
d

λ



Detour/recap: spherical coordinates

◮ Descartes: x , y , z

◮ Spherical:
◮ x = r sin θ cos ϕ,
◮ y = r sin θ sin ϕ,
◮ z = r cos θ

◮ Infinitesimal volume:

dx dy dz = dV = r2 sin θ dr dθ dϕ

◮ Integral:

∞∫

−∞

∞∫

−∞

∞∫

−∞

f (x , y , z)dx dy dz =

=

2π∫

0

π∫

0

∞∫

0

f (r , θ, ϕ)r2 sin θdr dθ dϕ
x

y

z

r

θ

φ

dr

dθ

dφ



Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

I(~q) =
∣
∣
∣

y
ρ (~r) e−i~q~r

d
3~r

∣
∣
∣

2

Let us derive the (small-angle) scattering intensity of a sphere which has
a radius R and 0 homogeneous electron density inside!
Electron-density function of an isotropic object: (r) = (|r |) = (r).
The integral can be simpified in spherical co rdinates:

I(q) =

∣
∣
∣
∣

∫ 2π

0

dφ

∫ ∞

0

dr r2 (r)

∫ π

0

sin θ dθ e−i|~q|·|~r | cos θ

∣
∣
∣
∣

2

where z has been chosen to be parallel with q (can be done due to the
spherical symmetry of (r))
Substitution of u = cos θ:

I(q) =

∣
∣
∣
∣
∣
∣
∣
∣

∫ 2π

0

dφ

2π

∫ ∞

0

r2 (r)dr

∫ 1

−1

du e−iqru
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∣
∣
∣
∣

2

where z has been chosen to be parallel with ~q (can be done due to the
spherical symmetry of ρ(~r))
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∣
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∣
∣
∣
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2π
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r2 (r)dr

∫ 1

−1

du e−iqru

∣
∣
∣
∣
∣
∣
∣
∣

2



Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

I(~q) =
∣
∣
∣

y
ρ (~r) e−i~q~r

d
3~r

∣
∣
∣

2
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∣
∣
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Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

∫ 1

−1

du e−iqru =

[
1

−iqr
e−iqru

]1

−1

Employing e iφ = cos φ + i sin φ:

−iqr

[
e−iqr − e iqr

]
=

iqr
[ i sin (qr)] =

sin (qr)

qr

which leads to

I(q) = I(q) = ( π)
2

∣
∣
∣
∣
∣

∫

0

(r)r2 sin (qr)

qr
dr

∣
∣
∣
∣
∣

2

.

◮ The scattering intensity of an isotropic system is also isotropic:
depends only on |q|

◮ The scattering amplitude of an isotropic system (more precisely
where (r) = (−r)) is real
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Small-angle scattering of a sphere (III)

The electron-density function of a homogeneous sphere is:

ρ(~r) =

{
ρ0 if |~r | ≤ R

0 otherwise.

Evaluating the previous integral:

Ig(q) =

(
4πρ0

q3
(sin(qR) − qR cos(qR))

)2

= ρ2
0








4πR3

3
︸ ︷︷ ︸

V

3

q3R3
(sin(qR) − qR cos(qR))

︸ ︷︷ ︸

Pg (qR)








2

◮ The scattered intensity scales with the 6th power of the linear size
(I ∝ V 2 ∝ R6)



Small-angle scattering of a sphere (IV)
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Small-angle scattering of a sphere (IV)

10 1 100 101 102

q R

10 11

10 9

10 7

10 5

10 3

10 1

|P
(q

R)
|2

◮ Log-log plotting is good ,

◮ qR < approximation: I ≈ e− q2 2

5 (Guinier)



Small-angle scattering of a sphere (IV)

10 1 100 101 102

q R

10 11

10 9

10 7

10 5

10 3

10 1

|P
(q

R)
|2

◮ Log-log plotting is good ,
◮ qR < 1 approximation: I ≈ e− q2R2

5 (Guinier)



Small-angle scattering of a sphere (IV)
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The Guinier approximation

◮ André Guinier: the low-q scattering of dilute nanoparticle
suspensions follows a Gaussian curve

◮ Generally:

I(q ≈ 0) = I0e−
q2R2

g
3

◮ Radius of gyration (or Guinier radius): describes the linear size of a
scattering object. By definition:

Rg ≡

√t
V

r2ρ(~r)d3~rt
V

ρ(~r)d3~r

◮ Connection between the shape parameters and Rg :

◮ sphere: Rg =
√

3/5R
◮ spherical shell: Rg = R

◮ cylinder:

√
R2

2
+ L2

12

◮ linear polymer chain: Nb2/6
◮ . . .
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Guinier plot
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The validity of the Guinier approximation

◮ The Guinier approximation
holds for nearly monodisperse

particulate systems too (see
next slides)

◮ Nearly spherical particles:
qRg / 3

◮ Anisotropic particles:
qRg / 0.7

◮ Upturn at small q (“smiling
Guinier”): attraction between
the particles (aggregation)

◮ Downturn at small q (“frowning
Guinier”): repulsive interaction
between the particles

◮ More details will be given for
protein scattering later. . .

André Guinier (1911 - 2000)



The effect of polydispersity

Multi-particle system:

ρ(~r) =
∑

j

ρj(~r − ~Rj)

Scattering amplitude:

A(~q) =
∑

j

Aj(~q)

=
∑

j

Aj,0(~q)e−i~q~Rj

Intensity:

I(~q) = A(~q)A∗(~q)

=
∑

j

∑

k

Aj(~q)A∗
k(~q)e i~q(~Rk −~Rj )

Shifting of the electron density
function by ~R:

Ashifted(~q) = A0(~q)e−i~q~R

r r'
R1

R2

R3
Rj

RN



Multi-particle system

I(~q) =
∑

j

∑

k

Aj(~q)A∗
k(~q)e i~q(~Rk −~Rj ) =

∑

j

Ij(~q)

︸ ︷︷ ︸

incoherent

+
∑

j

∑

k 6=j

Aj(~q)A∗
k(~q)e i~q(~Rk −~Rj )

︸ ︷︷ ︸

interference term

◮ Incoherent sum: the intensity of the distinct particles is summarized
◮ Cross-terms: interference from the correlated relative positions of

the particles
◮ Special case: identical, spherically symmetric particles

I(q) = ρ2
0V 2Pg (qR)2N






1 +

2

N

∑

j

∑

k>j

cos
(

~q(~Rk − ~Rj)
)







︸ ︷︷ ︸

S(q)

◮ Structure factor: depends only on the relative positions of the
distinct particles but not on their shape

◮ Uncorrelated system: S(q) = 1. Otherwise the Guinier region is
distorted!



Size distribution
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Scattering of a slightly polydisperse suspension of
nanoparticles

◮ Scattering of a dilute nanoparticle suspension:

I(q) =

∫ ∞

0

P(R)

size distribution

· 2
0

contrast

· V

volume

2 ·

P2(qR)
︸ ︷︷ ︸

form factor

dR

◮ If the shape of the particles is known, the size distribution can be
determined by fitting the scattering curve.
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Bimodal nanoparticle distribution



Model-independent approach

◮ The P(R) size distribution function is obtained in a histogram form.

◮ Large number of model parameters ⇒ danger of “overfitting”



Power-law behaviour
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The Porod region

◮ Power-law decreases are frequently
found in scattering curves: I ∝ q−α.

◮ Particles with smooth surfaces:
I(q → ∞) ∝ S

V
q−4: specific surface!

◮ Solutions of unbranched polymers:
◮ Ideal solvent (Θ-solution): random

walk following Gaussian statistics:
I(q) ∝ q−2

◮ Bad solvent: self-attracting random
walk: I(q) ∝ q−3

◮ Good solvent: self-avoiding random
walk: I(q) ∝ q−3/5

◮ Surface and mass fractals. . .

Günther Porod (1919 - 1984)



Detour: fractals

◮ Self-similar systems: showing the same shapes even in different
magnifications

◮ Nanosystems with fractal properties:
◮ Activated carbon
◮ Porous minerals
◮ Uneven surfaces

◮ Characterization: Hausdorff-dimension (fractal dimension)



Fractal dimension

◮ Measure the area of the Sierpińsky carpet with different unit lengths
◮ Connection between the unit length and the required unit areas to

cover the carpet:
Length unit 1 1/3 1/9 . . . 3−n

Required unit areas 1 8 64 . . . 8n

◮ A Hausdorff dimension: how the number of required unit areas (A)
scales with the unit length (a)?

a = 1/3n → n = − log3 a

A = 8n = 8− log3 a = 8
−

log8 a

log8 3 = alog8 3 = a
ln 3
ln 8 = a−d

◮ The fractal dimension of the Sierpińsky carpet is
ln 8/ ln 3 ≈ 1.8928 < 2

◮ For a simple square:

A = a−2, i.e. the fractal dimension is the same as the Euclidean



Fractal dimension on the scattering curve
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q2R2
g

3

I ∝ q−αRg =

√ t
ρ(~r)~r2d3~rt
ρ(~r)d3~r

Porod region

Particles with flat surfaces (Porod): α = 4
Gauss-chains (Kratky): α = 2
Mass fractals: α = dm

Surface fractals: α = 6 − ds



The pair density distribution function – back to the real
space

Electron

density

Inverse Fourier

transform

Fourier transform

Autocorrelation
Absolute

square

Scattered

amplitude

Differential

scattering c.s.

("intensity")

Distance

distribution

(PDDF)

◮ There is another route connecting the electron density and the
scattered intensity

◮ The p(r) pair density distribution function (PDDF) is the
self-correlation of the electron density.

◮ p(r) = F−1 [I (q)] real space information.
◮ Physical meaning: find all the possible point pairs inside the particle

and make a histogram from their distances



The PDDFs of some geometrical shapes
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Summary – Pros and cons of scattering experiments

Advantages

◮ Statistically significant average
results

◮ Simple measurement principle

◮ Separation of length scales
(SAXS is blind for atomic sizes)

◮ Accurate quantitative results,
traceable to the definitions of
the SI units of measurement

Disadvantages

◮ Nonintuitive, indirect
measurement results →
difficult interpretation

◮ Cannot be used on too
complex systems

◮ Possible ambiguity of the
determined structure (phase
problem)

◮ Measures mean values: no
means for getting results on
structural forms present in
low concentrations



Summary, outlook

Summary

◮ Structure determination by scattering

◮ Intensity, momentum transfer, scattering pattern, scattering curve

◮ Fourier transform, absolute square, phase problem

◮ Scattering of a homogeneous sphere, Guinier and Porod limits

◮ Size distribution of nanoparticles

In the following weeks:

◮ How to measure SAXS: instrumentation, practicalities

◮ Different material systems: periodic samples, self-assembling lipid
systems (micelles, bilayers), proteins, polymer solutions, phase
separated polymers: based on actual measurement data



Thank you for your attention!
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