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History of (small-angle) scattering

I �Even the ancient greeks. . . �
I Scattering: XVII-XIX. century (Huygens, Newton, Young,

Fresnel. . . )
I X-rays: 1895 (Wilhelm Konrad Röntgen)
I X-ray di�raction on crystals: W.H. és W.L. Bragg (1912), M. von

Laue, P. Debye, P. Scherrer. . . (-1930)
I First observation of small-angle scattering: P. Krishnamurti, B.E.

Warren (kb. 1930)
I Mathematical formalism and theory of small-angle scattering: André

Guinier, Peter Debye, Otto Kratky, Günther Porod, Rolf Hosemann,
Vittorio Luzzati (1940-1960)



The principle of scattering

Primary beam

Sample



The principle of scattering



The principle of scattering



SAXS vs. WAXS

I Principle of scattering: probe particles! interaction with the
structure ! de�ection ! detection! structure determination

SampleX-ray Small-angle scattering

Wide-angle scattering (diffraction)

I Measurement: the �intensity� of radiation de�ected in di�erent
directions

I Strong forward scattering (logarithmic scale!)
I Wide-angle scattering: Bragg equation (cf. previous lecture)
I Small-angle scattering: . . .



Small- and wide-angle X-ray scattering
Scattering of a spherical nanocrystallite (simple cubic lattice)

I Wide-angle scattering: crystal structure

I Small-angle scattering: the overall size of the crystallite
I Small-angle scattering is blind on the atomic level: equivalence of

homogeneous and discrete atomic structures
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Small-angle scattering

I Small-Angle X-ray Scattering � SAXS
I Elasticscattering of X-rays on electrons
I Measurement: �intensity� versus the scattering angle
I Results: electron-density inhomogeneities on the 1-100 length scale
I But: indirect results, di�cult to interpret ( / )
I Typical experimental conditions:

I Transmission geometry
I High intensity, nearly point-collimated beam
I Two-dimensional position sensitive detector
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Scattering pattern � scattering curve

I Scattering pattern: matrix of incidence
counts

I Numerical values in the pixels: the
number of the photons received

I Each pixel has a corresponding
scattering angle

I Scattering curve
I The same information in a more

tractable form
I Obtained by azimuthally averaging

the scattering pattern:
1. Grouping of pixels corresponding

to the same scattering angle
2. Averaging of the intensities

I Dependent variable: intensity
(�count rate�)

I Independent variable: scattering
variable (�distance from the center�)



Scattering cross-section

I The sample under investigation (scatterer)

I Incident particle current density:jin = Nin (A � t ) [cm� 2 s� 1]
I Total scattered particle current:Iout = Nout t [s� 1]
I Scattering cross-section: �� Iout jin = A � Nout Nin [cm2]
I di�erential scattering cross-section: d� d
 [cm 2 sr� 1]
I Normalized to unit sample volume: d

d
 � 1
V

d�
d
 [cm � 1 sr� 1]
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The scattering variable
I The natural variable of the intensity is the scattering vector:

~q � ~k2� � ~k0

h
~s � ~S2� � ~S0 = ~q=(2� )

i

i.e. the vectorial di�erence of the wave vectors of the scattered and
the incident radiation

I [Wave vector: points in the direction of wave propagation,
magnitude is 2�=� ]

I Physical meaning: the momentum acquired by the photon upon
scattering (! �momentum transfer�)

 | k 0 |=2 �� /��

 |k 2 ��
|=2 �� /�

�

|q
|=4

��  sin
��  / ��

 | k 0 |=2 �� /��

2��

Sample

Incident beam Forward scattering

Radiation scatte
red

under 2
��

I Magnitude: q = j~qj = 4 � sin �
� �

small angles
4��=� [s = 2 sin �=� ])

I Bragg-equation:q = 2 � n=d n 2 Z [s = n=d]



The scattering contrast

I X-rays are scattered by electrons
I Scattering contrast = relative electron

density with respect to the average
I Only the relative electron density

counts!
I Small contrast: weak scattering signal

I Water: 333.3 e� /nm 3 (homework to
calculate)

I SiO2 nanoparticles: 660-800 e� /nm 3

I Proteins: 400-450 e� /nm 3

I Determined by:
I Mass density of the matter (e.g. solid

copolimers)
I Presence of elements with high

atomic numbers
I Choice of solvent (mean electron

density)
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Recapitulation of the basic quantities

Intensity: or di�erential scattering cross-section
I the proportion of the particles. . .
I . . . incoming in a unit cross section. . .
I . . . over unit time. . .
I . . . onto a sample of unit volume. . .
I . . . which is scattered in a given direction. . .
I . . . under unit solid angle.

Scattering variable (q): or momentum transfer: characterizing the angle
dependence.

I Magnitude/ sin� � �
I ~~q: the momentum acquired by the photon due to

the interaction with the sample

Scattering contrast:scattering potential of given part of the sample in
comparison with its environment

I This is the relative electron density in case of X-ray
scattering
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Connection between structure and scattering

I Scattering on the inhomogeneities of the electron density)
characterization of the structure with the relative electron density
function:

� � (~r ) = � (~r ) � �

(in the following we omit �!)
I The amplitude of the scattered radiation:

A(~q) =
y

V

� (~r )e� i~q~r d3~r

which is formally the Fourier transform of the electron density.
I Only the intensitycan be measured:I = jAj2



Detour: Fourier transform
Basic question: what is the frequency of a given periodic signal?
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Fourier transform

I Fourier transformation: determination of the frequency components

I W rks for more components as well
I re sampling time: better frequency resolution (Nyquist-Shannon

sampling theorem)
I Even more frequency components
I The relative weights of the frequency components is also given
I �Inside the black b x�: F(� ) =

R
f (t )e� i � t dt

I Can be inverted (although. . . ):f (t ) = 1
2�

R
F(� )eit � d�
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The phase problem

I The Fourier transform is invertible (?!): the amplitude
unambiguously describes the scattering structure

I Complex quantities:
z = a + bi = Aei �

I Absolute square (this is how we get the intensity):

jzj2 = z � z� = Aei � � Ae� i � = A2

I Where did the� phase go?!
I Because the scattered amplitude cannot be measured, there is no

chance to fully recover the structure just from scattering.
I Another problem: the intensity can only be measured in a subspace

of the ~q space: only an incomplete inversion of the Fourier transform
can be done.



How big is this problem?

Idea from Saldin et. al. J. Phys.: Condens. Matter 13 (2001) 10689-10707

I The phase carries most of the information!
I The operation of taking the square root is ambiguous over the

complex plane (there are complex numbers withjzj = 1)!
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What can be done / Is this really a problem?
The scattering of vastly di�erent structures can be undiscernible

1. Solution: determination of �robust� parameters (see later)
I Guinier radius
I Power-law exponent
I Porod-volume
I . . .

2. Solution: model �tting
I Choosing the specimen from a model-specimen described by given

parameters which best �ts the scattering curve
I If the model ensemble is narrow enough, the� (~r ) $ I(~q) mapping

can be unique
I A priori knowledge, results of other experiments are indispensable!

3. �Guessing� the phase (crystallography) or measuring it (holography)

Structures which
are compatible with
the measured data

Structures which
can be parametrized
by the model



Bragg's law: a special case

I The sample is periodic (d
repeat distance)

I � : incidence and exit angle
I Constructive interference in the

detector: the rays re�ected
from neighbouring planes reach
the detector in phase

I Path di�erence: � s = n�
wheren 2 N

I From simple geometry:
� s = 2d sin�

I 2d sin� = n�
I 4�

� sin� = 2�
d n

I q =
2�
d

n
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����
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Detour/recap: spherical coordinates

I Descartes:x, y, z
I Spherical:

I x = r sin� cos' ,
I y = r sin� sin' ,
I z = r cos�

I In�nitesimal volume:

dx dy dz = dV = r 2 sin� dr d� d'

I Integral:

1Z

�1

1Z

�1

1Z

�1

f (x; y; z)dx dy dz =

=

2�Z

0

�Z

0

1Z

0

f (r ; � ; ' )r 2 sin� dr d� d'
x

y

z

r

��

��

dr

d��

d��



Small-angle scattering of a sphere (I)
General formula of the scattered intensity:

I(~q) =
�
�
�
y

� (~r ) e� i~q~r d3~r
�
�
�
2

Let us derive the (small-angle) scattering intensity of a sphere which has
a radiusR and 0 homogeneous electron density inside!
Electron-density function of an isotropic object:(r ) = (jr j) = (r ).
The integral can be simpi�ed in spherical co rdinates:

I(q) =

�
�
�
�

Z 2�

0
d�

Z 1

0
dr r 2 (r )

Z �

0
sin� d� e� i j~qj�j ~r j cos�
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�
�
�

2

wherez has been chosen to be parallel withq (can be done due to the
spherical symmetry of (r ))
Substitution of u = cos � :

I(q) =

�
�
�
�
�
�
�
�

Z 2�

0
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0
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�
�
�
�
�
�
�
�

Z 2�

0
d�

| {z }
2�

Z 1

0
r 2� (r )dr

Z 1

� 1
du e� iqru

�
�
�
�
�
�
�
�

2



Small-angle scattering of a sphere (II)
The innermost integral can be readily evaluated:

Z 1

� 1
du e� iqru =

�
1

� iqr
e� iqru

� 1

� 1

Employingei � = cos � + i sin� :

� iqr

�
e� iqr � eiqr �

=
iqr

[ i sin (qr)] =
sin (qr)

qr

which leads to

I(q) = I(q) = ( � )2

�
�
�
�
�

Z

0
(r )r 2 sin (qr)

qr
dr

�
�
�
�
�

2

.

I The scattering intensity of an isotropic system is also isotropic:
depends only onjqj

I The scattering amplitude of an isotropic system (more precisely
where (r ) = (� r )) is real
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Small-angle scattering of a sphere (III)
The electron-density function of a homogeneous sphere is:

� (~r ) =
�

� 0 if j~r j � R
0 otherwise.

Evaluating the previous integral:

Ig(q) =
�

4�� 0

q3 (sin(qR) � qRcos(qR))
� 2

= � 2
0

0

B
B
B
@

4� R3

3| {z }
V

3
q3R3 (sin(qR) � qRcos(qR))
| {z }

Pg (qR)

1

C
C
C
A

2

I The scattered intensity scales with the 6th power of the linear size
(I / V 2 / R6)



Small-angle scattering of a sphere (IV)
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Small-angle scattering of a sphere (IV)
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Small-angle scattering of a sphere (IV)
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The Guinier approximation

I André Guinier: the low-q scattering of dilute nanoparticle
suspensions follows a Gaussian curve

I Generally:

I(q � 0) = I0e�
q2R2

g
3

I Radius of gyration (or Guinier radius): describes the linear size of a
scattering object. By de�nition:

Rg �

s t
V r 2� (~r )d3~r

t
V � (~r )d3~r

I Connection between the shape parameters andRg :
I sphere:Rg =

p
3=5R

I spherical shell:Rg = R

I cylinder:
q

R2

2 + L2

12

I linear polymer chain:Nb2=6
I . . .



Guinier plot
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I Visual check on the validity of the Guinier approximation
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Guinier plot

0.05 0.10 0.15 0.20

q (nm �� 1)

10 7

10 8

10 9

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

Simulated data
Rg =16.3 nm

I I � I0e�
q2R2

g
3

I ln I � ln I0 �
R2

g

3 q2

I ln I - q2: �rst order polynomial
I Visual check on the validity of the Guinier approximation



The validity of the Guinier approximation

I The Guinier approximation
holds fornearly monodisperse
particulate systems too (see
next slides)

I Nearly spherical particles:
qRg / 3

I Anisotropic particles:
qRg / 0:7

I Upturn at smallq (�smiling
Guinier�): attraction between
the particles (aggregation)

I Downturn at smallq (�frowning
Guinier�): repulsive interaction
between the particles

I More details will be given for
protein scattering later. . .

André Guinier (1911 - 2000)



The e�ect of polydispersity
Multi-particle system:

� (~r ) =
X

j

� j (~r � ~Rj )

Scattering amplitude:

A(~q) =
X

j

Aj (~q)

=
X

j

Aj ;0(~q)e� i~q~Rj

Intensity:

I(~q) = A(~q)A� (~q)

=
X

j

X

k

Aj (~q)A�
k (~q)ei~q(~Rk � ~Rj )

Shifting of the electron density
function by ~R:

Ashifted(~q) = A0(~q)e� i~q~R

r r'
R1

R2

R3
R j

RN



Multi-particle system

I(~q) =
X

j

X

k

Aj (~q)A�
k (~q)ei~q(~Rk � ~Rj ) =

X

j

Ij (~q)

| {z }
incoherent

+
X

j

X

k6= j

Aj (~q)A�
k (~q)ei~q(~Rk � ~Rj )

| {z }
interference term

I Incoherent sum: theintensity of the distinct particles is summarized
I Cross-terms: interference from the correlatedrelativepositions of

the particles
I Special case: identical, spherically symmetric particles

I(q) = � 2
0V 2Pg(qR)2N

8
<

:
1 +

2
N

X

j

X

k> j

cos
�
~q(~Rk � ~Rj )

�
9
=

;
| {z }

S(q)

I Structure factor: depends only on the relative positions of the
distinct particles but not on their shape

I Uncorrelated system:S(q) = 1. Otherwise the Guinier region is
distorted!



Size distribution
There's no such thing as a fully monodisperse system.
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Scattering of a slightly polydisperse suspension of
nanoparticles

I Scattering of a dilute nanoparticle suspension:

I(q) =

Z 1

0
P(R)

size distribution

� 2
0

contrast

� V
volume

2 �

P2(qR)
| {z }
form factor

dR

I If the shape of the particles is known, the size distribution can be
determined by �tting the scattering curve.

I Statistically signi�cant (� 109 particles in 1 mm3)
I Accurate sizes with well-de�ned uncertainties (SI �traceability�)
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Bimodal nanoparticle distribution



Model-independent approach

I The P(R) size distribution function is obtained in a histogram form.
I Large number of model parameters) danger of �over�tting�



Power-law behaviour



Power-law behaviour



The Porod region

I Power-law decreases are frequently
found in scattering curves:I / q� � .

I Particles with smooth surfaces:
I(q ! 1 ) / S

V q� 4: speci�c surface!
I Solutions of unbranched polymers:

I Ideal solvent (�-solution): random
walk following Gaussian statistics:
I(q) / q� 2

I Bad solvent: self-attracting random
walk: I(q) / q� 3

I Good solvent: self-avoiding random
walk: I(q) / q� 3=5

I Surface and mass fractals. . .

Günther Porod (1919 - 1984)



Detour: fractals

I Self-similar systems: showing the same shapes even in di�erent
magni�cations

I Nanosystems with fractal properties:
I Activated carbon
I Porous minerals
I Uneven surfaces

I Characterization: Hausdor�-dimension (fractal dimension)



Fractal dimension

I Measure the area of the Sierpi«sky carpet with di�erent unit lengths
I Connection between the unit length and the required unit areas to

cover the carpet:
Length unit 1 1/3 1/9 : : : 3� n

Required unit areas 1 8 64 : : : 8n

I A Hausdor� dimension: how the number of required unit areas (A)
scales with the unit length (a)?

a = 1=3n ! n = � log3 a

A = 8 n = 8 � log3 a = 8 � log8 a
log8 3 = alog8 3 = a

ln 3
ln 8 = a� d

I The fractal dimension of the Sierpi«sky carpet is
ln 8=ln 3 � 1:8928< 2

I For a simple square:

A = a� 2, i.e. the fractal dimension is the same as the Euclidean



Fractal dimension on the scattering curve
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Surface fractals:� = 6 � ds



The pair density distribution function � back to the real
space

I There is another route connecting the electron density and the
scattered intensity

I The p(r ) pair density distribution function (PDDF) is the
self-correlation of the electron density.

I p(r ) = F � 1 [I (q)] real space information.
I Physical meaning: �nd all the possible point pairs inside the particle

and make a histogram from their distances



The PDDFs of some geometrical shapes
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Summary � Pros and cons of scattering experiments

Advantages

I Statistically signi�cant average
results

I Simple measurement principle
I Separation of length scales

(SAXS is blind for atomic sizes)
I Accurate quantitative results,

traceable to the de�nitions of
the SI units of measurement

Disadvantages

I Nonintuitive, indirect
measurement results!
di�cult interpretation

I Cannot be used on too
complex systems

I Possible ambiguity of the
determined structure (phase
problem)

I Measures mean values: no
means for getting results on
structural forms present in
low concentrations



Summary, outlook
Summary

I Structure determination by scattering
I Intensity, momentum transfer, scattering pattern, scattering curve
I Fourier transform, absolute square, phase problem
I Scattering of a homogeneous sphere, Guinier and Porod limits
I Size distribution of nanoparticles

In the following weeks:
I How to measure SAXS: instrumentation, practicalities
I Di�erent material systems: periodic samples, self-assembling lipid

systems (micelles, bilayers), proteins, polymer solutions, phase
separated polymers: based on actual measurement data



Thank you for your attention!
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