Beam delivery system GeniX 3D Cu Ultra Low Divergence

July 2010

Fig. 1: Beam delivery system head and control unit

Applications

- small angle x-ray scattering (SAXS)
- grazing incidence SAXS
- high resolution x-ray diffraction

Benefits

- · improved brightness
- reduced divergence
- low background parasitic radiation
- extremely stable beam
- compact system easy to integrate
- low power and low maintenance source
- smart source power management
- intuitive interface

Options

- scatterless slits systems
- configurable collimator system
- software utility for remote operation

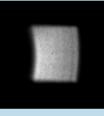
Accessories

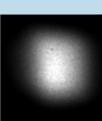
- alignment camera
- · pindiode detector
- dry vacuum pump
- · water to air chiller

19, rue François Blumet 38360 Sassenage - France

Phone:+33 4 76 26 95 40 Fax: +33 4 76 26 95 49 www.xenocs.com sales@xenocs.com

Xenocs - A spin off company from Institut Laue Langevin


The GeniX 3D Cu Ultra Low Divergence is the latest generation of collimated X-ray Beam Delivery System from Xenocs providing increased brightness. It combines a 40 µm focus source with single reflection FOX3D multilayer optics for the generation of a highly collimated X-ray beam with a further reduced divergence.


The X-ray beam provided by the GeniX 3D Cu ULD is homogeneous with a well controlled beam propagation. It has a high flux density which remains constant over long distances. This makes the GeniX 3D Cu ULD a high performance system for long SAXS set-ups. Moreover the system is adapted for scatterless collimation add-on to reduce parasitic scattering in SAXS applications. The ultralow divergence achieved by the GeniX 3D Cu ULD makes it also ideal for combining with a crystal monochromator in High Resolution X-ray Diffraction.

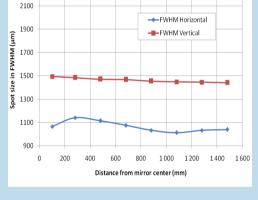

The new GeniX 3D is in the continuation of the GeniX platform in terms of high stability, reliability and low maintenance level. It is designed to be easily integrated as a standard sealed tube system and to be adapted to any type of diffractometer.

Fig. 2: High resolution CCD images of the collimated X-ray beam, collected in air

Fig. 3: Focusing curves (FWHM).

Preliminary Technical Data

Subject to technical changes without notice

	eam	tea	riirac
_	Cuill	ıcu	LUICS

Mirror to camera: 0.28 meters

Spot size : 1041 x

Mirror to camera:

Spot size: 1040 x

1.48 meters

1442 µm HxV FHWM

HxV FWHM

 Wavelength 	1.54Å / 8 keV (Cu K $lpha$)
Integrated flux	> 100 x10 ⁶ photons/sec

(vacuum, 30W-50KV-0.6mA source)

• Flux within 1 mm² at 70 cm from source (in vacuum) > 55 x10⁶ photons/sec

~ 0,4mrad FW20%M both planes Divergence

13.6kg

Electronic

· Total weight

• Dimensions 3U	- 19" - 600mm in depth

110/220 V (AC) Power

Head

Dimensions (LxWxH)	27 x 12 x 37 cm ³
Total weight	Maximum 14 5Kg

Integration	
System power consumption	150 Watts
 Remote control features 	Ethernet port & Software
System shutter	Safety shutter
 Cooling flow rate (closed loop) 	>1.0l/min (set point 25°C)

Working pressure: 3mbar Dry vacuum pump Pump speed: 0.6m³/hr