
Traceable determination of the size-
distribution of nanoparticles
• Interlaboratory comparision study of

a new reference material
• Determination of size distribution:

Guinier, monodisperse sphere,
Gaussian ensemble of spheres,
Monte Carlo

• CREDO has been certified by IRMM,
Joint Research Centre, EC

Full accessible angular range
• Continuous measurement in the

Bragg-size-range of 0.2 nm to 340
nm (to be increased)

• The full range can be covered in
three set-ups (incl. WAXS)

• Usually no scaling needed for mer-
ging curves

Weakly scattering samples
• First in-house BioSAXS: de-anchoring

of the N-terminal tail of a Nudix hy-
drolase enzyme

• Shape reconstruction via dummy
atom model (DAMMIN): still experi-
mental

• Measurement time: 6-8 h + buffer
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Because the low X-ray flux in laboratory apparatuses, it is essential to do the experiments under optimal geometrical conditions, enabling measurement in a given range of
the scattering variable (defined as q = 4π sinθ / λ) in the shortest time possible and with the least instrumental distortion. Furthermore, as most of the frequently studied sys-
tems (e.g. biological macromolecules or lipid systems) are weak scatterers, the signal-to-noise ratio has to be drastically improved by increasing the beam intensity and
lowering the instrumental background.
Here we present CREDO (Creative Research Equipment for DiffractiOn), our recently constructed in-house SAXS facility, as well as some useful ideas to make the most from a
laboratory small-angle scattering apparatus. More information about the facility is available at its homepage, http://credo.ttk.mta.hu.

http://credo.ttk.mta.hu

Analytical approach for determining
the optimum collimation geometry
of the three-pinhole scheme:
1. give constraints on sample and

beamstop diameter (lowest q),
2. list setups (pinhole sizes and

spacings) with no parasitic
scattering outside the beam-
stop,

3. select the one with the highest
flux.

The procedure has been implemented in a stand-alone program.
Straightforward alignment: independent XY motorized positioning for
each pinhole

• Many short exposures with frequent sample change
and frequent measurement of absolute intensity
standard (glassy carbon)
– following changes in flux: monitor counter can be

spared
– monitoring changes with

correlation matrices
– time-resolved experiments

• Processing of reduced data in a
browser-based notebook interface (IPython, jupyter):
– on-line: instant feedback during measurement
– reusable code: plotting, fitting, data interpretation

can be re-executed as more data are obtained
– self-documenting workflow

Correlation matrices of a sample stable throughout the measurement (top), a series of
exposures, one of which is affected by cosmic radiation (center) and a sample undergoing a

sudden change (bottom)
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Sample and instrumental stability

In situ time-resolved study of the self-assembly of a red-emitting gold-cysteine supramolecular complex

Computer-controlled hardware (X-ray source, detector, motors, vacuum
gauge, heater/cooler stage etc.)
• Motorized XY sample stage

– sequential measurement of
several samples: minimizing
the need for user interaction

– position-resolved experiments
– frequent automatic recalibration

• Motorized collimation (pinholes,
beamstop): easy re-alignment

• In situ measurements with tunable external parameters (temperat-
ure, shear strain etc.)

• Logging of all possible quantities: post-hoc diagnostics, reproducibility
• After loading the samples, the

instrument can be controlled
remotely, even over the internet

• In-house developed instrument control
software (SAXSCtrl)
– intuitive graphical user interface
– simple command language

– interactive, command-line use
– scripts for unattended operation

Screenshot of the SASCollOpt.py program
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• X-ray source: GeniX3D Cu
ULD (Xenocs, France),
30W microfocus, Cu Kα

• Detector: Pilatus-300k
(Dectris, Switzerland),
two-dimensional, CMOS
hybrid pixel

• Attainable q-range: 0.019
nm-1 to 30 nm-1

• Sample-to-detector distance: 72 mm to 2.5 m in discrete steps
• Sample requirement <5 μl (aqueous)
• Typical beam size at the sample: 0.8 mm (min. 0.2 mm)
• On-line data reduction with calibration into absolute intensity units

against a pre-calibrated glassy carbon

X-ray generator
with multilayer
optics

Collimation: three pinhole stages

Sample stage with
detachable vacuum
chamber

Exchangeable
flight tube

Beamstop stage

Two-dimensional
position-sensitive
detector

Incident X-rays

Scattered X-rays

12 μm Kapton®
entry window

76 μm Kapton®
exit window

Geometrical scheme of the CREDO apparatus

Overview

Optimal collimation

Extensive automation

Effects of guest molecules and other external
parameters on the thermotropic phase transitions

in multilamellar phospholipid vesicle systems

Further examples
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