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Bragg’s law

◮ Periodic sample (d repeat
distance)

◮ θ incidence and reflection angle

◮ Constructive interference at the
detector: waves reflected from
neighbouring planes meet in

phase

◮ ∆s = nλ where n ∈ N

◮ From geometry: ∆s = 2d sin θ

◮ 2d sin θ = nλ

◮
4π
λ
sin θ = 2π

d
n

◮ q =
2π
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Connection between structure and scattering
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Guinier and Porod limits
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I ∝ q−αRg =
√ ∫∫∫

ρ(~r)~r2d3~r∫∫∫
ρ(~r)d3~r

Porod region

Particles with flat surfaces (Porod): α = 4
Gauss-chains (Kratky): α = 2
Mass fractals: α = dm
Surface fractals: α = 6 − ds
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Lipid systems, liposomes

◮ Amphipatic molecules: hydrophilic
headgroups, hydrophobic carbon chains

◮ Self-assemble in aqueous solution

◮ Cell membranes of living organisms

◮ Other similar molecules: surfactants,
detergents etc.

◮ Application in research & industry:
◮ Model membranes
◮ Drug carrier vehicles
◮ Nanoreactors
◮ . . .

◮ Phase transitions
◮ Thermotropic
◮ Lyotropic



Self-assembled structures of phospholipid systems

◮ The self-assembled structure is
determined by:

◮ Shape of the lipid molecule
◮ Length and flexibility of the carbon

chains
◮ Electrostatic charge of the

headgroups

◮ Bilayer lipids: approximately cylindrical

◮ Non-bilayer lipids: conical shape
◮ Large headgroup cross-section area:

micelle / hexagonal phase
◮ Small headgroup cross-section area

inverse micelle / inverse hexagonal
phase
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Lyotropic phases of lipid/water systems



Thermotropic phases of DPPC/water mixtures
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Thermotropic phases of DPPC: SAXS

Relative peak positions: 1, 2, 3, 4 → lamellar



Thermotropic phases of DPPC: SAXS

Relative peak positions: 1, 2, 3, 4 → lamellar
Temperature 25◦C 38◦C 46◦C 55◦C
Phase Lβ Pβ′ Lα Lα

Repeat distance 6.373 nm “7.193 nm∗” 6.657 nm 6.569 nm



DOPC

Relative peak positions: 1, 2, (3)
Temperautre 25◦C 38◦C 46◦C 55◦C
Phase Lα Lα Lα Lα

Repeat distance 6.323 nm 6.370 nm 6.440 nm 6.642 nm
6.335 nm



DOPE: hexagonal phase

Relative peak positions: 1,
√

3, 2,
√

7, 3,
√

12,
√

13
Temperature 25◦C 38◦C 46◦C 55◦C
Phase HII HII HII HII

Lattice parameter 6.458 nm 6.244 nm 6.119 nm 5.989 nm



Coexistence of phases

◮ Room temperature: lamellar phase (Lα)

◮ 38 ◦C: appearance of the inverse hexagonal phase (HII)

◮ 46 ◦C: the cubic phase (QII) appears, three phases coexist

◮ 55 ◦C: the lamellar phase vanishes

◮ after cooling: the cubic phase remains, the lamellar phase is not
recovered: memory effect!



Sterically stabilized unilamellar vesicles

◮ Unilamellar vesicle: a single
phospholipid bilayer

◮ Hydration of lipids:
multilamellar vesicles are
formed spontaneously

◮ “Unilamellarization”: ultrasound
threatment / extrusion

◮ Avoiding spontaneous fusion to
multilamellar vesicles:

◮ Charged lipids
◮ Sterical stabilization: e.g.

with PEG-conjugated lipids

◮ Primary application: drug
carrier and targeting agents ⇒
size is critical!



Sterically stabilized vesicles
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◮ Less electrons in the object ⇒ weaker scattering

◮ No layer-layer correlation ⇒ no peaks

◮ What we see is the phospholipid bilayer form factor



Scattering of a phospholipid bilayer

ρ

r

ISSL(q) = [FPEG,in(q) + Fhead,in(q) + FCH(q) + Fhead,out(q) + FPEG,out(q)]
2



Scattering of a bilayer

ISSL(q) =

[FPEG,in(q) + Fhead,in(q) + FCH(q) + Fhead,out(q) + FPEG,out(q)]
2

◮ Every term is a step function or a Gaussian curve

◮ ρ(q) =

{

ρ0 if |r − r0| < σ
0 otherwise

ρ(q) = ρ0√
2πσ2

e−
(r−r0)2

2σ2

◮ Model parameters:
ρ r σ

Inner PEG ρPEG,in rPEG,in σPEG,in

Inner headgroup ρhead −rhead σhead

Carbon chain -1 0 σtail

Outer headgroup ρhead rhead σhead

Outer PEG ρPEG,out rPEG,out σPEG,out

+ global intensity scaling factor (A) + constant background (C ) +
mean vesicle radius (R0) + spread of the vesicle radius (δR)

◮ Asymmetric model (PEGs are different): 14 parameters

◮ Symmetric model (PEGs are equivalent): 11 parameters



Sterically stabilized vesicles
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Micelles

◮ Self-assembling systems composed of amphipatic molecules

◮ Conical shape: large hydrophilic head, narrow hydrophobic tail

◮ Critical micelle concentration (CMC)

◮ Not only spherical (even when only one component!)
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Bicelles

◮ Two components: long-chained bilayer
lipid and short-chained detergent

◮ The shape is controlled by:
q = clipid/cdetergens

◮ q = 0: detergent micelle
◮ q → ∞: bilayer

◮ Importance: small carriers for
membrane proteins

◮ Typical example: DHPC-DMPC bicelle
◮ DHPC: 1,2-Dihexanoyl-sn-Glycero-3-

Phosphocholine
◮ DMPC: 1,2-Dimyristoyl-sn-Glycero-

3-Phosphocholine

DHPC DMPC



Scattering of a DHPC micelle
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◮ Scattering: similar to the lipid bilayers

◮ Guinier region

◮ Fitting: micelle shape



Peptide-carrying DHPC-DMPC bicelles
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Activated carbons

Activated carbons

◮ Adsorbent, substrate,
structural material

◮ Hierarchical structure
◮ Preparation:

1. Pyrolysis: organic → C
2. Activation: pore

formation

◮ Tailorable
◮ choice of the precursor
◮ parameters of the

activation

◮ Anisotropy: not utilized
(but could be. . . )

Model of the hierarchical structure

 
mesopore

crystallite

graphene layer

amorphous carbon

micropore

aggregation of crystallites

Hirsch, Proc. Royal Soc. Lond. A (1954) 226(1165) 143-169
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Sample preparation

Sample preparation for SAXS
measurements

◮ Pyrolysis of 1 cm3 wooden cubes
(700 ◦C) → 6 × 6 × 6 mm3 carbon
cubes

◮ Physical activation:

C(s)

H2O(g)−−−−→
900◦C

C(g)

◮ Mass decrease (conversion) with
increasing activation time:

Fagus Quercus Picea
sylvatica robur abies
(beech) (oak) (spruce)

0 min 0% 0 % 0 %
15 min 9 % 10 % 10 %
45 min 26 % 26 % 27 %
90 min 54 % 55 % 49 %

◮ SAXS measurements: synchrotron
beamlines (Hamburg, Berlin)

For details, see: Wacha, Varga, Vainio, Hoell, Bóta (2011) Carbon 49(12) 3958-3971.



SAXS on activated carbons
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◮ Horizontal scattering pattern:
vertical fibrils

◮ Decrease in anisotropy: breaking
of the fibrils, pore formation

◮ Characterization of anisotropy:
azimuthal scattering curves, sector
averaging



Extent of the anisotropy in real space

Radial sector averages ◮ Radial scattering curves from the scattering patterns

◮ Averaging over the full 2π (– – –)
◮ Narrowed to the region of the most intensive

azimuthal peak (—)
◮ Perpendicular to the previous direction (· · · )

◮ Anisotropy does not appear at small sizes
(q > 2 nm−1 → d < 1.5 nm)

◮ Anisotropy decreases with activation

◮ Power-law functions (→ fractal dimension) and
Guinier regions (→ radius of gyration)

◮ Two Guinier regions

◮ Small conversion (short activation time):
micropores

◮ Large conversion (long activation time):
mesopores

◮ Mass fractal → surface fractal transition

◮ Spruce: surface fractal appears after 49 %
burn-off: microcracks

◮ Beech: no surface fractal: inherently porous?



Photoluminescent gold-cystein nanocomplexes

◮ Protein-stabilized supramolecular gold clusters: photoluminescence
◮ Au-Cys nanocomplex: a simple model for uncovering the stabilizing

mechanism

HAuCl4 + Cys →

(AuCys)αn

◮ Yellow precipitate

◮ water soluble at
pH>12

T ,t−−→

(AuCys)βn

◮ stable, opalescent
suspension

◮ orange photolumi-
nescence on
UV-excitation

◮ The speed of transition strongly depends on the temperature of
incubation, ranging from a few hours to a day ⇒ time-resolved
SAXS on CREDO

Söptei et. al. 2015 Coll.Surf.A 470, 8-14.



TRSAXS on the Au-Cys nanocomplex

Incubation at 20 ◦C

Curvature at small q → Guinier

◮ Objects with well-defined sizes

◮ Moves left → increase in size

◮ Increasing intensity → their number
increases

◮ Starts with I ∝ q−2 → thin lamellae
(generalized Guinier)

Peak at the high-q limit

◮ Periodic structure

◮ Increasing intensity →
more perfect periodicity



Automated model fitting

Number of layers and periodicity ◮ Guinier approximation for extended
lamellae:
Ithickness ≈ G · q−2e−q2R2

T →
thickness of the homogeneous lamella:
T =

√
12RT

◮ Final periodic distance: 1.29 nm
◮ Fine structure of the lamellae: Au

layers above each other with ≈ 1.3 nm
distance, the Cys molecules acting as
spacers

◮ Well-correlated with the increase of
photoluminescence intensity: 0.9208

◮ FF-TEM measurements: a few nm
thick lamellae
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Automated model fitting

Lamellae as seen by TEM ◮ Guinier approximation for extended
lamellae:
Ithickness ≈ G · q−2e−q2R2

T →
thickness of the homogeneous lamella:
T =

√
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◮ Final periodic distance: 1.29 nm
◮ Fine structure of the lamellae: Au
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distance, the Cys molecules acting as
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◮ FF-TEM measurements: a few nm
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Size distribution of SiO2 nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of
the European Commission: introducing a new SiO2 particle size standard.
Certification of the new material with several SAXS instruments

ERM FD-101b: candidate reference
material (CRM)

◮ Methods of size determination:

1. Guinier fit: I (q ≪ 1/R) ≈ I0e
−

q2R2

5

2. Fitting of the sphere form factor:
I (q) = Φsphere(q,R) ≡

V 2
R

[

3
(qR)3

(sin(qR)− qR cos(qR))
]2

3. Fitting of a sphere distribution:

I (q) =
∞
∫

0

p(R)Φsphere(q,R)dR

4. Monte Carlo method: Ri population
with wi statistical weights where
|I (q)−

∑

i
wiΦsphere(q,Ri )| is

minimized



Size distribution of SiO2 nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of
the European Commission: introducing a new SiO2 particle size standard.
Certification of the new material with several SAXS instruments

ERM FD-101b: candidate reference
material (CRM)

◮ Methods of size determination:

1. Guinier fit: I (q ≪ 1/R) ≈ I0e
−

q2R2

5

2. Fitting of the sphere form factor:
I (q) = Φsphere(q,R) ≡

V 2
R

[

3
(qR)3

(sin(qR)− qR cos(qR))
]2

3. Fitting of a sphere distribution:

I (q) =
∞
∫

0

p(R)Φsphere(q,R)dR

4. Monte Carlo method: Ri population
with wi statistical weights where
|I (q)−

∑

i
wiΦsphere(q,Ri )| is

minimized



Size distribution of SiO2 nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of
the European Commission: introducing a new SiO2 particle size standard.
Certification of the new material with several SAXS instruments

Monte Carlo size determination ◮ Methods of size determination:

1. Guinier fit: I (q ≪ 1/R) ≈ I0e
−

q2R2

5

2. Fitting of the sphere form factor:
I (q) = Φsphere(q,R) ≡

V 2
R

[

3
(qR)3

(sin(qR)− qR cos(qR))
]2

3. Fitting of a sphere distribution:

I (q) =
∞
∫

0

p(R)Φsphere(q,R)dR

4. Monte Carlo method: Ri population
with wi statistical weights where
|I (q)−

∑

i
wiΦsphere(q,Ri )| is

minimized



Size distribution of SiO2 nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of
the European Commission: introducing a new SiO2 particle size standard.
Certification of the new material with several SAXS instruments

Monte Carlo size determination ◮ Methods of size determination:

1. Guinier fit: I (q ≪ 1/R) ≈ I0e
−

q2R2

5

2. Fitting of the sphere form factor:
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A favourable side-effect: CREDO has been certified by IRMM for nanoparticle
size distribution determination



Biological Small-Angle X-ray Scattering

BioSAXS

◮ Biorelevant macromolecules

◮ Mainly size- and shape determination
assuming particles of homogeneous
electron density

◮ Key parameters: Rg , I0 ≡ lim
q→0

I (q)

◮ Information to be obtained:
◮ Size, (low resolution) shape, volume

and molecular mass of the protein
◮ Flexibility/folding state

(folded/disordered)
◮ Validation of crystal structures
◮ Aligning the relative positions of

known domains

Drawbacks / caveats

◮ Low scattering contrast ⇒ bad
signal/noise ratio

◮ Dilute sample (otherwise
Guinier approximation breaks
down)

◮ Purified sample (esp.
contaminating large molecules)

◮ Monodisperse sample (avoid
oligomerization, aggregation)

◮ Featureless scattering curve:
danger of “overfitting”

◮ Uncertainties of background
subtraction (solvent scattering)

◮ Phase problem ⇒ the
uniqueness of the determined
shape



The BioSAXS method

◮ Well-established and validated algorithms and methods available

◮ Basic assumptions: the protein solution is a monodisperse

population of independent, homogeneous nanoparticles

independent: no interparticle interference, Guinier approximation
holds

monodisperse: no oligomerization, no aggregation
homogeneous: simple shape fitting; SAXS is blind on the atomic

length-scale!



Interpretation of BioSAXS measurements

◮ Guinier approximation: I (q ≪ Rg ) ∝ I0e
−

q2R2
g

3 ; I0 = (∆ρ)
2
V 2.

◮ Porod invariant: Q ≡ 1
2π2

∞
∫

0

q2I (q)dq = 2π2 (∆ρ)
2
V

◮ Porod volume: VPorod = 2π2I0/Q
◮ First steps:

1. Subtraction of the solvent background (corrected by the volume
fraction of the protein)

2. Guinier fit → I0,Rg

3. Porod invariant → VPorod

4. Inverse Fourier: I (q) → p(r) pair distance distribution function
(PDDF)

5. I0, Rg can be obtained from p(r):

I0 =

∞
∫

0

p(r)dr ; R
2
g =

∞
∫

0

p(r)r2dr

2
∞
∫

0

p(r)dr

6. Compare the I0 and Rg obtained from the two methods
7. Further interpretation. . .

◮ ATSAS: software suite for BioSAXS data processing and
interpretation (EMBL Hamburg, Research Group of Dmitri Svergun)



The Kratky plot

◮ High-q part of the scattering of a polimer chain following Gaussian
statistics: I (q → ∞) ∝ 2

q2R2
g

◮ Kratky plot: q2I - q. Behaviour in the q → ∞ limit:
◮ Folded proteins (I ∝ q−4): tends to 0
◮ Disordered proteins (I ∝ q−2): constant or divergent



Protein shape fitting from small-angle scattering

Fitting of geometrical shapes to scattering curves or PDDFs

◮ BODIES program (part of ATSAS)
◮ Ball, hollow sphere, ellipsoid, dumbbell etc.
◮ Very few parameters

Dummy atom model (DAM)

◮ Constructing the shape from tightly packed (fcc or hcp lattice)
spherical building blocks

◮ Monte Carlo algorithm

1. Random configuration
2. Small, random modification of the configuration (add/remove a unit)
3. Calculate scattering
4. Compare the measured and calculated scattering

◮ Better fit: keep the change
◮ Worse fit: drop the change (or keep it with a low probability)

5. Repeat from step #2 until needed

◮ Many parameters: possible ambiguity of the results
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Lysozyme – A “typical” BioSAXS experiment

Crystal structure ◮ Well-known protein (“veterinary horse”)

◮ Correlation peak
◮ Caused by el.stat. repulsion
◮ Radius of gyration cannot be

determined
◮ How to get rid of it?

◮ Dilution
◮ Salting (screening the repulsion)

◮ Guinier plot (log I vs. q2): assessing
the I ∝ exp (−q2R2

g 3) shape
◮ Kratky plot (q2I vs. q): folded protein



Lysozyme – A “typical” BioSAXS experiment

Effect of concentration
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◮ Well-known protein (“veterinary horse”)
◮ Correlation peak

◮ Caused by el.stat. repulsion
◮ Radius of gyration cannot be
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◮ Dilution

◮ Salting (screening the repulsion)

◮ Guinier plot (log I vs. q2): assessing
the I ∝ exp (−q2R2

g 3) shape
◮ Kratky plot (q2I vs. q): folded protein



Lysozyme – A “typical” BioSAXS experiment

Effect of ionic strength

100

q (nm−1)

10-5

10-4

10-3

10-2

d
Σ
/d
Ω

 (
cm

−1
 s

r−
1
)

0 mM NaCl
25 mM NaCl
77 mM NaCl
150 mM NaCl100q (nm−1)

d
Σ
/d
Ω

 (
cm

−1
 s

r−
1
)

◮ Well-known protein (“veterinary horse”)
◮ Correlation peak

◮ Caused by el.stat. repulsion
◮ Radius of gyration cannot be

determined
◮ How to get rid of it?

◮ Dilution
◮ Salting (screening the repulsion)

◮ Guinier plot (log I vs. q2): assessing
the I ∝ exp (−q2R2

g 3) shape
◮ Kratky plot (q2I vs. q): folded protein



Lysozyme – A “typical” BioSAXS experiment

Guinier plot
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Lysozyme – A “typical” BioSAXS experiment

Kratky plot
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The shape of lysozyme
„Dummy atom model” – coarse-grained description



The shape of lysozyme
„Dummy atom model” – coarse-grained description

Good agreement with the crystal structure!



Calmodulin

◮ Highly abundant plasma protein
of eukaryotic cells (≈ 1 %)

◮ Key element of Ca2+-induced
signal pathways

◮ Changes shape on Ca2+ binding

◮ The “EF-hand” motifs open
in both end-domains:
hydrophobic pockets open up

◮ End domains are displaced
◮ Secondary structure of the

linker part: loop → helix
(known crystallization
artefact!)

Apo (Ca2+-free) conformation
(MX)

Envelope: Van der Waals surface
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Calmodulin – SAXS results

Scattering curves
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◮ Simila radii of gyration

◮ Partially disordered (linker part?)

◮ Dummy atom model:

◮ Dumbbell shape
◮ Apo conformation more

“loose”
◮ Ca2+ binding makes the

structure more rigid
◮ Differences from the crystal

structure: crystallization
artefacts?
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Kratky plot
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Calmodulin – SAXS results

DAM: Ca2+-bound conformation ◮ Very similar scattering curves

◮ Scattering curves: dumbbell shape
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Reliability of dummy atom models

◮ Phase problem!
◮ Methods to improve reliability

◮ Several candidate shapes from multiple
runs of DAMMIF

◮ Screening the candidates with DAMSEL
◮ Average the remaining shapes with

DAMAVER
◮ Refine the average shape with DAMMIN

◮ Quantification of the ambiguit
(AMBIMETER)

◮ A library has been made from all possible

shapes
◮ Dimensionless scattering curves fo the

library elements: (q)/ 0 vs. qRg

◮ Find number of those library elements
where the curve is compatible with the
measured one

◮ Lysozyme: 1; apo calmodulin: 422;
Ca2+-bound calmodulin: 417

FT

FT

Amplitude

Amplitude

Phase

Phase

IFT

IFT

Idea from Saldin et. al. J. Phys.: Condens. Matter 13 (2001) 10689-10707
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Literature and software

Software

◮ SASFit: model fitting

◮ ATSAS: BioSAXS data handling, RG , PDDF calculation, dummy
atom fitting etc.

◮ SANSView: plotting, model fitting

Literature

◮ Boualem Hammouda: Probing Nanoscale Structures: The SANS

Toolbox (http://www.ncnr.nist.gov/staff/hammouda/the_
SANS_toolbox.pdf)

◮ J. Kohlbrecher, I. Breßler: SASFit manual

(http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html)

◮ L. A. Feigin és D. I. Svergun: Structure Analysis by Small-Angle

X-Ray and Neutron Scattering (http://www.embl-hamburg.de/
biosaxs/reprints/feigin_svergun_1987.pdf)

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html
http://www.embl-hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf
http://www.embl-hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf


Summary

Interpretation of SAXS results

◮ Multilamellar vesicles and ordered lipid systems: determination of
the periodic repeat distance

◮ Sterically stabilized vesicles: the radial electron density distribution
of the phospholipid bilayer

◮ Micelles and bicelles: shape, core-shell model parameters

◮ Activated carbons: anisotropy, fractal properties

◮ Gold-cysteine nanocomplex: the time evolution of the
photoluminescent nanostructure

◮ SiO2 nanoparticles (repeated): size, size distribution

◮ BioSAXS: determination of the size, shape and flexibilitx of proteins
in solution
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Thank you for your attention!
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