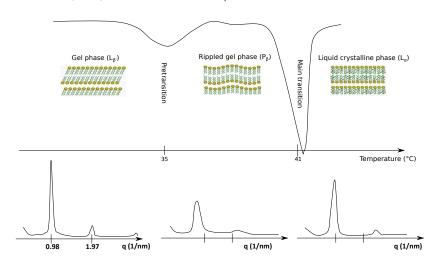
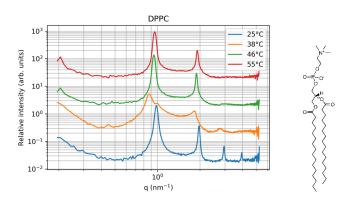
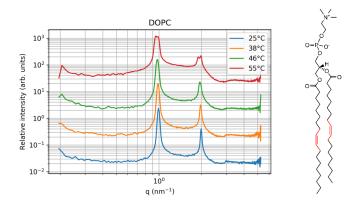

Self-assembled structures of phospholipid systems

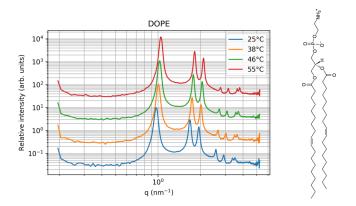

- The self-assembled structure is determined by:
 - ▶ Shape of the lipid molecule
 - Length and flexibility of the carbon chains
 - Electrostatic charge of the headgroups
- Bilayer lipids: approximately cylindrical
- ► Non-bilayer lipids: conical shape
 - Large headgroup cross-section area: micelle / hexagonal phase
 - Small headgroup cross-section area inverse micelle / inverse hexagonal phase



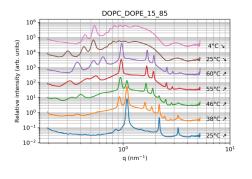
Thermotropic phases of DPPC/water mixtures

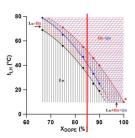


Thermotropic phases of DPPC: SAXS


Relative peak positions: 1, 2, 3, 4 \rightarrow lamellar					
Temperature	25°C	38°C	46° C	55°C	
Phase	L_eta	$P_{eta'}$	L_{lpha}	L_{lpha}	
Repeat distance	6.373 nm	"7.193 nm*"	6.657 nm	6.569 nm	

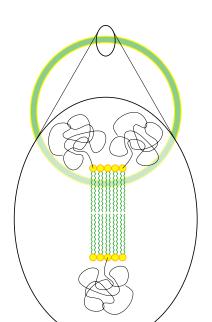
DOPC

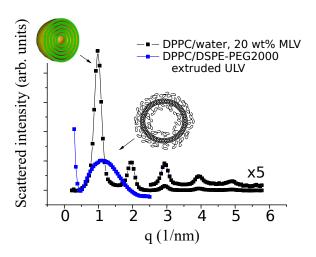

Relative peak positions: 1, 2, (3)					
Temperautre	25°C	38°C	46°C	55°C	
Phase	L_{lpha}	L_{lpha}	L_{lpha}	L_{lpha}	
Repeat distance	6.323 nm	6.370 nm	6.440 nm	6.642 nm	
				6.335 nm	


DOPE: hexagonal phase

Relative peak positions: 1, $\sqrt{3}$, 2, $\sqrt{7}$, 3, $\sqrt{12}$, $\sqrt{13}$					
Temperature	25°C	38°C	46°C	55°C	
Phase	Нп	H_{II}	H_{II}	H_{II}	
Lattice parameter	6.458 nm	6.244 nm	6.119 nm	5.989 nm	

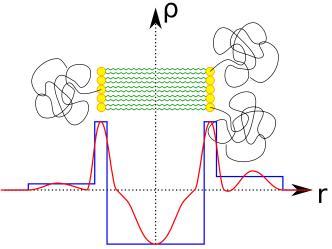
Coexistence of phases




- ▶ Room temperature: lamellar phase (L_{α})
- ightharpoonup 38 °C: appearance of the inverse hexagonal phase (H_{II})
- ▶ 46 $^{\circ}$ C: the cubic phase (Q_{II}) appears, three phases coexist
- ▶ 55 °C: the lamellar phase vanishes
- ▶ after cooling: the cubic phase remains, the lamellar phase is not recovered: memory effect!

Sterically stabilized unilamellar vesicles

- Unilamellar vesicle: a single phospholipid bilayer
- Hydration of lipids: multilamellar vesicles are formed spontaneously
- "Unilamellarization": ultrasound threatment / extrusion
- Avoiding spontaneous fusion to multilamellar vesicles:
 - Charged lipids
 - Sterical stabilization: e.g. with PEG-conjugated lipids
- ▶ Primary application: drug carrier and targeting agents ⇒ size is critical!



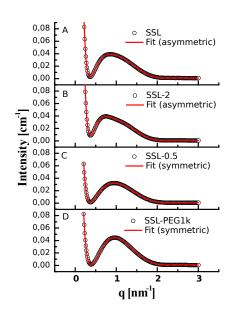
Sterically stabilized vesicles

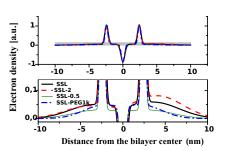
- ▶ Less electrons in the object ⇒ weaker scattering
- No layer-layer correlation ⇒ no peaks
- ▶ What we see is the phospholipid bilayer form factor

Scattering of a phospholipid bilayer

 $I_{\mathsf{SSL}}(q) = \left[F_{\mathsf{PEG,in}}(q) + F_{\mathsf{head,in}}(q) + F_{\mathsf{CH}}(q) + F_{\mathsf{head,out}}(q) + F_{\mathsf{PEG,out}}(q)\right]^2$

Scattering of a bilayer


$$I_{\text{SSL}}(q) = \left[F_{\text{PEG,in}}(q) + F_{\text{head,in}}(q) + F_{\text{CH}}(q) + F_{\text{head,out}}(q) + F_{\text{PEG,out}}(q)\right]^2$$


- Every term is a step function or a Gaussian curve
- Model parameters:

	ρ	r	σ
Inner PEG	$ ho_{PEG,in}$	r _{PEG,in}	$\sigma_{PEG,in}$
Inner headgroup	ρ_{head}	$-r_{head}$	σ_{head}
Carbon chain	-1	0	$\sigma_{\sf tail}$
Outer headgroup	$ ho_{head}$	r_{head}	$\sigma_{\sf head}$
Outer PEG	$ ho_{PEG,out}$	r _{PEG,out}	$\sigma_{PEG,out}$

- + global intensity scaling factor (A) + constant background (C) + mean vesicle radius (R_0) + spread of the vesicle radius (δR)
- ► Asymmetric model (PEGs are different): 14 parameters
- Symmetric model (PEGs are equivalent): 11 parameters

Sterically stabilized vesicles

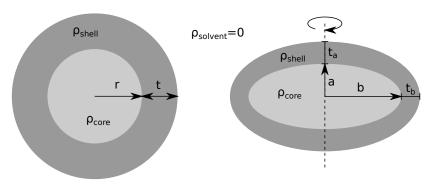
SSL: HSPC +

DSPE-PEG2000

SSL-2: HSPC +

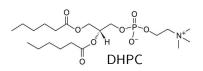
2×DSPE-PEG2000

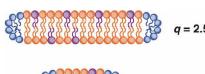
SSL-0.5: HSPC +


0.5×DSPE-PEG2000

SSL-PEG1k: HSPC +

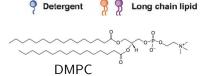
DSPE-PEG1000

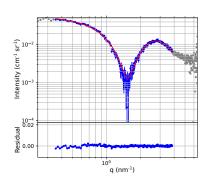

Micelles

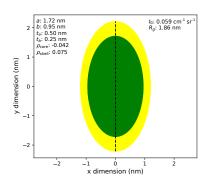

- Self-assembling systems composed of amphipatic molecules
- ► Conical shape: large hydrophilic head, narrow hydrophobic tail
- ► Critical micelle concentration (CMC)
- ▶ Not only spherical (even when only one component!)

Bicelles

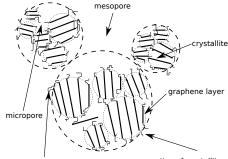
- ► Two components: long-chained bilayer lipid and short-chained detergent
- ▶ The shape is controlled by:
 - $q = c_{\text{lipid}}/c_{\text{detergens}}$
 - ightharpoonup q = 0: detergent micelle
 - $q \to \infty$: bilayer
- Importance: small carriers for membrane proteins
- ▶ Typical example: DHPC-DMPC bicelle
 - ▶ DHPC: 1,2-Dihexanoyl-sn-Glycero-3-Phosphocholine
 - DMPC: 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine







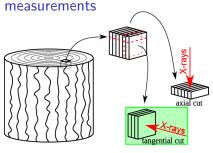
Scattering of a DHPC micelle


- Scattering: similar to the lipid bilayers
- ► Guinier region
- ► Fitting: micelle shape

Activated carbons

Activated carbons

- Adsorbent, substrate, structural material
- ► Hierarchical structure
- Preparation:
 - 1. Pyrolysis: organic \rightarrow C
 - 2. Activation: pore formation
- ► Tailorable
 - choice of the precursor
 - parameters of the activation
- Anisotropy: not utilized (but could be...)


Model of the hierarchical structure

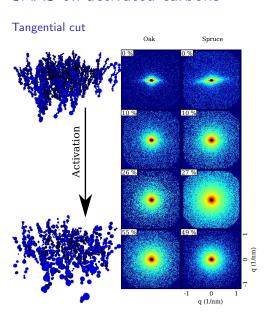
amorphous carbon aggregation of crystallites
Hirsch, Proc. Royal Soc. Lond. A (1954) 226(1165) 143-169

Sample preparation

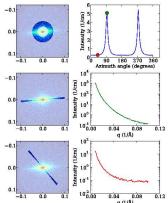
Sample preparation for SAXS

- ▶ Pyrolysis of 1 cm³ wooden cubes $(700 \, ^{\circ}\text{C}) \rightarrow 6 \times 6 \times 6 \, \text{mm}^3 \text{ carbon cubes}$
- Physical activation:

$$C_{(s)} \xrightarrow{H_2O_{(g)}} C_{(g)}$$

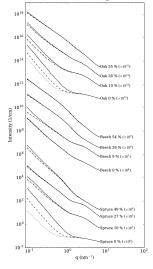

Mass decrease (conversion) with increasing activation time:

	Fagus sylvatica (beech)	Quercus robur (oak)	Picea abies (spruce)
0 min	0%	0 %	0 %
15 min	9 %	10 %	10 %
45 min	26 %	26 %	27 %
90 min	54 %	55 %	49 %


 SAXS measurements: synchrotron beamlines (Hamburg, Berlin)

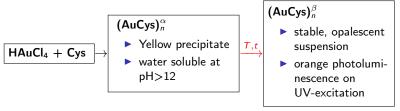
For details, see: Wacha, Varga, Vainio, Hoell, Bóta (2011) Carbon 49(12) 3958-3971.

SAXS on activated carbons



- Horizontal scattering pattern: vertical fibrils
- ► Decrease in anisotropy: breaking of the fibrils, pore formation
- Characterization of anisotropy: azimuthal scattering curves, sector averaging

Extent of the anisotropy in real space


Radial sector averages

- Radial scattering curves from the scattering patterns
 - Averaging over the full $2\pi (---)$
 - Narrowed to the region of the most intensive azimuthal peak (—)
 - ▶ Perpendicular to the previous direction (···)
- Anisotropy does not appear at small sizes $(q>2~{
 m nm}^{-1}
 ightarrow d<1.5~{
 m nm})$
- Anisotropy decreases with activation
- Power-law functions (→ fractal dimension) and Guinier regions (→ radius of gyration)
- ► Two Guinier regions
 - Small conversion (short activation time): micropores
 - Large conversion (long activation time): mesopores
- Mass fractal → surface fractal transition
 - Spruce: surface fractal appears after 49 % burn-off: microcracks
 - ▶ Beech: no surface fractal: inherently porous?

Photoluminescent gold-cystein nanocomplexes

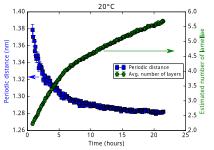
- ▶ Protein-stabilized supramolecular gold clusters: photoluminescence
- Au-Cys nanocomplex: a simple model for uncovering the stabilizing mechanism

► The speed of transition strongly depends on the temperature of incubation, ranging from a few hours to a day ⇒ time-resolved SAXS on CREDO

Söptei et. al. 2015 Coll.Surf.A 470, 8-14.

TRSAXS on the Au-Cys nanocomplex

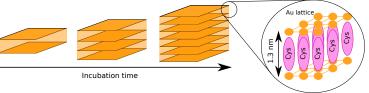
Curvature at small q o Guinier


- Objects with well-defined sizes
- $lackbox{ Moves left}
 ightarrow {\sf increase in size}$
- ► Increasing intensity → their number increases
- Starts with $I \propto q^{-2} \rightarrow$ thin lamellae (generalized Guinier)

Peak at the high-q limit

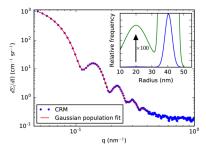
- ► Periodic structure
- $\hbox{ Increasing intensity} \to \\ \hbox{ more perfect periodicity}$

Automated model fitting


Number of layers and periodicity

Guinier approximation for extended lamellae:

 $I_{\rm thickness} \approx G \cdot q^{-2} e^{-q^2 R_T^2} \rightarrow$ thickness of the homogeneous lamella: $T = \sqrt{12} R_T$


- ► Final periodic distance: 1.29 nm
- ▶ Fine structure of the lamellae: Au layers above each other with $\approx 1.3~\text{nm}$ distance, the Cys molecules acting as spacers
- Well-correlated with the increase of photoluminescence intensity: 0.9208
- ► FF-TEM measurements: a few nm thick lamellae

Size distribution of SiO₂ nanoparticles

Institute for Reference Materials and Measurements, Joint Research Centre of the European Commission: introducing a new SiO_2 particle size standard. Certification of the new material with several SAXS instruments

ERM FD-101b: candidate reference material (CRM)

Methods of size determination:

- 1. Guinier fit: $I(q \ll 1/R) \approx I_0 e^{-\frac{q^2 R^2}{5}}$
- 2. Fitting of the sphere form factor:

$$I(q) = \Phi_{\text{sphere}}(q, R) \equiv$$

$$V_R^2 \left[\frac{3}{(qR)^3} \left(\sin(qR) - qR \cos(qR) \right) \right]^2$$

3. Fitting of a sphere distribution:

$$I(q) = \int_{0}^{\infty} p(R) \Phi_{\text{sphere}}(q, R) dR$$

4. Monte Carlo method: R_i population with w_i statistical weights where $|I(q) - \sum_i w_i \Phi_{\text{sphere}}(q, R_i)|$ is minimized

A favourable side-effect: CREDO has been certified by IRMM for nanoparticle size distribution determination

Biological Small-Angle X-ray Scattering

BioSAXS

- Biorelevant macromolecules
- Mainly size- and shape determination assuming particles of homogeneous electron density
- Key parameters: R_g , $I_0 \equiv \lim_{q \to 0} I(q)$
- Information to be obtained:
 - Size, (low resolution) shape, volume and molecular mass of the protein
 - Flexibility/folding state (folded/disordered)
 - Validation of crystal structures
 - Aligning the relative positions of known domains

Drawbacks / caveats

- ▶ Low scattering contrast ⇒ bad signal/noise ratio
- Dilute sample (otherwise Guinier approximation breaks down)
- Purified sample (esp. contaminating large molecules)
- Monodisperse sample (avoid oligomerization, aggregation)
- ► Featureless scattering curve: danger of "overfitting"
- Uncertainties of background subtraction (solvent scattering)
- ▶ Phase problem ⇒ the uniqueness of the determined shape

The BioSAXS method

▶ Well-established and validated algorithms and methods available

▶ Basic assumptions: the protein solution is a *monodisperse* population of *independent*, *homogeneous* nanoparticles

independent: no interparticle interference, Guinier approximation

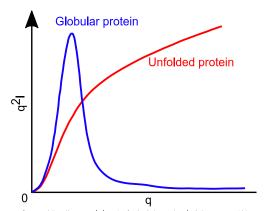
holds

monodisperse: no oligomerization, no aggregation

homogeneous: simple shape fitting; SAXS is blind on the atomic

length-scale!

Interpretation of BioSAXS measurements


- ► Guinier approximation: $I(q \ll R_g) \propto I_0 e^{-\frac{q^2 R_g^2}{3}}$; $I_0 = (\Delta \rho)^2 V^2$. ► Porod invariant: $Q \equiv \frac{1}{2\pi^2} \int\limits_0^\infty q^2 I(q) \mathrm{d}q = 2\pi^2 (\Delta \rho)^2 V$
- ▶ Porod volume: $V_{Porod} = 2\pi^2 I_0/Q$
- First steps:
 - 1. Subtraction of the solvent background (corrected by the volume fraction of the protein)
 - 2. Guinier fit $\rightarrow I_0, R_g$
 - 3. Porod invariant $\rightarrow V_{\mathsf{Porod}}$
 - 4. Inverse Fourier: $I(q) \rightarrow p(r)$ pair distance distribution function (PDDF)
 - 5. I_0 , R_g can be obtained from p(r):

$$I_0 = \int_0^\infty p(r) dr; \qquad R_g^2 = \frac{\int_0^\infty p(r) r^2 dr}{2 \int_0^\infty p(r) dr}$$

- 6. Compare the I_0 and R_g obtained from the two methods
- 7. Further interpretation...
- ATSAS: software suite for BioSAXS data processing and interpretation (EMBL Hamburg, Research Group of Dmitri Svergun)

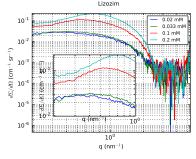
The Kratky plot

- ▶ High-q part of the scattering of a polimer chain following Gaussian statistics: $I(q \to \infty) \propto \frac{2}{q^2 R^2}$
- ▶ Kratky plot: q^2I q. Behaviour in the $q \to \infty$ limit:
 - ▶ Folded proteins $(I \propto q^{-4})$: tends to 0
 - ▶ Disordered proteins $(I \propto q^{-2})$: constant or divergent

Source: https://www-ssrl.slac.stanford.edu/~saxs/analysis/assessment.htm

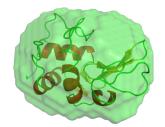
Protein shape fitting from small-angle scattering

Fitting of geometrical shapes to scattering curves or PDDFs


- ▶ BODIES program (part of ATSAS)
- ▶ Ball, hollow sphere, ellipsoid, dumbbell etc.
- Very few parameters

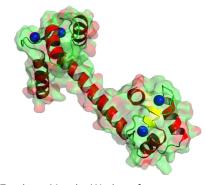
Dummy atom model (DAM)

- Constructing the shape from tightly packed (fcc or hcp lattice) spherical building blocks
- Monte Carlo algorithm
 - 1. Random configuration
 - 2. Small, random modification of the configuration (add/remove a unit)
 - 3. Calculate scattering
 - 4. Compare the measured and calculated scattering
 - Better fit: keep the change
 - ▶ Worse fit: drop the change (or keep it with a low probability)
 - 5. Repeat from step #2 until needed
- ► Many parameters: possible ambiguity of the results


Lysozyme – A "typical" BioSAXS experiment

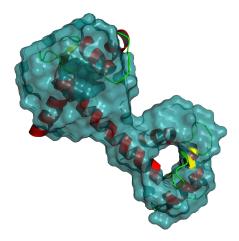
Effect of concentration

- ► Well-known protein ("veterinary horse")
- ► Correlation peak
 - Caused by el.stat. repulsion
 - Radius of gyration cannot be determined
 - ► How to get rid of it?
 - Dilution
 - Salting (screening the repulsion)
- ► Guinier plot (log I vs. q^2): assessing the $I \propto \exp(-q^2 R_g^2/3)$ shape
- ▶ Kratky plot $(q^2I \text{ vs. } q)$: folded protein


Dummy atom model

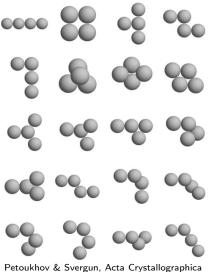
Calmodulin

- ▶ Highly abundant plasma protein of eukaryotic cells (≈ 1 %)
- Key element of Ca²⁺-induced signal pathways
- ► Changes shape on Ca²⁺ binding
 - The "EF-hand" motifs open in both end-domains: hydrophobic pockets open up
 - ► End domains are displaced
 - Secondary structure of the linker part: loop → helix (known crystallization artefact!)


Ca²⁺-bound conformation (MX)

Envelope: Van der Waals surface

Calmodulin - SAXS results


DAM: Ca²⁺-bound conformation

- Very similar scattering curves
- Scattering curves: dumbbell shape
- Similar radii of gyration
- Partially disordered (linker part?)
- Dummy atom model:
 - ► Dumbbell shape
 - Apo conformation more "loose"
 - ► Ca²⁺ binding makes the structure more rigid
 - Differences from the crystal structure: crystallization artefacts?

Reliability of dummy atom models

- ▶ Phase problem!
- Methods to improve reliability
 - Several candidate shapes from multiple runs of DAMMIF
 - Screening the candidates with DAMSEL
 - Average the remaining shapes with DAMAVER
 - Refine the average shape with DAMMIN
- Quantification of the ambiguity (AMBIMETER)
 - A library has been made from all possible shapes
 - ▶ Dimensionless scattering curves for the library elements: $I(q)/I_0$ vs. qR_g
 - Find number of those library elements where the curve is compatible with the measured one
 - Lysozyme: 1; apo calmodulin: 422;
 Ca²⁺-bound calmodulin: 417

Petoukhov & Svergun, Acta Crystallographics D 2015, 71(5), 1051-1058

Literature and software

Software

- SASFit: model fitting
- ▶ ATSAS: BioSAXS data handling, R_G , PDDF calculation, dummy atom fitting etc.
- SANSView: plotting, model fitting

Literature

- Boualem Hammouda: Probing Nanoscale Structures: The SANS Toolbox (http://www.ncnr.nist.gov/staff/hammouda/the_ SANS_toolbox.pdf)
- ▶ J. Kohlbrecher, I. Breßler: SASFit manual (http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html)
- L. A. Feigin és D. I. Svergun: Structure Analysis by Small-Angle X-Ray and Neutron Scattering (http://www.embl-hamburg.de/biosaxs/reprints/feigin_svergun_1987.pdf)