Small-Angle X-ray Scattering – a (mainly) practical introduction: "Where and how to measure SAXS?"

András Wacha

Research Centre for Natural Sciences, Hungarian Academy of Sciences

Outline

Recapitulation

Common SAS camera types

Characteristic parameters

Line-focus Kratky camera

Point focus (pinhole) camera

Main components

Radiation source

X-ray tube

Synchrotron

Collimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS - CREDO

Synchrotron SAXS - B1 ("JUSIFA")

Scheme of an experiment

Data acquisition

Corrections and calibrations

Summary

Outline

Recapitulation

Common SAS camera types

Characteristic parameters
Line-focus Kratky camera
Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

llimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS – CREDO

Synchrotron SAXS - B1 ("JUSIFA")

Scheme of an experiment

Data acquisition

orrections and calibrations

Summary

Scattering experiments

- Scattering of X-rays on the matter
- $\blacktriangleright \ \, \mathsf{Scattering} \,\, \mathsf{pattern} \, \to \mathsf{scattering} \,\, \mathsf{curve}$

Intensity

Relative intensity: the number of "event" detected during the measurement

Absolute intensity: differential scattering cross-section:

$$d\sigma/d\Omega = I_{\rm in}/|\vec{j}_{\rm out}|$$

Angle-dependence

Scattering vector: $\vec{q} = \vec{k}_{2\theta} - \vec{k}_0$, $q = 4\pi \sin \theta / \lambda$

Physical meaning: The momentum acquired by the photon in the process $(h\lambda = p)$

Real-space equivalent: Periodic repeat distance via Bragg's equation:

$$q=2\pi n/d$$
, $n\in\mathbb{N}$

Connection between structure and scattering

- Electron density function $(\rho(\vec{r}))$
- ► Fourier transform
- ▶ Absolute square → phase problem
- ▶ Back to the real space: PDDF

Outline

Recapitulation

Common SAS camera types

Characteristic parameters Line-focus Kratky camera Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

llimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS - CREDO

Synchrotron SAXS - B1 ("JUSIFA")

Scheme of an experiment

Data acquisition

Corrections and calibrations

Summary

Small-angle scattering camera types

- ► Diffractometer
 - ightharpoonup Point-by-point measurement in q
 ightharpoonup long measurement time
 - ► Well-defined angular resolution
- Line-focus (Kratky) camera
 - high intensity
 - instrumental smearing of the scattering curve
- Pinhole camera
 - low distortion
 - ▶ easily tunable
 - ► simple principle

Small-angle scattering camera types

- Diffractometer
 - ightharpoonup Point-by-point measurement in q
 ightharpoonup long measurement time
 - ▶ Well-defined angular resolution
- ► Line-focus (Kratky) camera
 - high intensity
 - instrumental smearing of the scattering curve
- Pinhole camera
 - low distortion
 - ▶ easily tunable
 - ► simple principle
- **.** . .

Small-angle scattering camera types

- Diffractometer
 - ightharpoonup Point-by-point measurement in q
 ightharpoonup long measurement time
 - ▶ Well-defined angular resolution
- Line-focus (Kratky) camera
 - high intensity
 - instrumental smearing of the scattering curve
- ▶ Pinhole camera
 - ► low distortion
 - ► easily tunable
 - ► simple principle
- **.**..

Characteristic parameters

Final goal: measure weakly scattering samples in short times

X-ray beam

- High flux
- ► Highly parallel (divergence ≪ 1 mrad)
- Monochromatic $(\Delta \lambda/\lambda)$

Angular resolution

- ► Sample-to-detector distance
- Shape and size of the detector area
- Pixel size

Noise

- Electronic noise from the detector
- Parasitic scattering (comes from the X-ray source, scattered, but not by the sample)
- ► External radiation

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- ▶ No moving parts

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- No moving parts
- Kratky-type collimation block
- ► Typical beam size: 2-3 cm × <1 mm

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- No moving parts
- Kratky-type collimation block
- ► Typical beam size: 2-3 cm × <1 mm
- High intensity on the sample but smearing on the scattering curve

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- No moving parts
- Kratky-type collimation block
- ► Typical beam size: 2-3 cm × <1 mm
- ► High intensity on the sample but smearing on the scattering curve

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- No moving parts
- Kratky-type collimation block
- ► Typical beam size: 2-3 cm × <1 mm
- High intensity on the sample but smearing on the scattering curve
- Post hoc numeric correction needed

- Compact, small footprint
- ► 1D position sensitive detector
- Fixed sample-to-detector distance
- No moving parts
- Kratky-type collimation block
- ► Typical beam size: 2-3 cm × <1 mm
- High intensity on the sample but smearing on the scattering curve
- Post hoc numeric correction needed

Point focus (pinhole) camera

- ▶ Small beam size (<1 mm), low divergence
- ► Exchangeable sample-to-detector distance: tuning of the angular range
- ▶ Negligible smearing, typically no correction needed
- Easy to set up and align (compared to the Kratky block)
- ▶ Larger footprint but more possibilities
- ▶ Not (just) a "routine" instrument

Outline

Recapitulation

Common SAS camera types

Characteristic parameters Line-focus Kratky camera Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

Collimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS - CREDO Synchrotron SAXS - B1 ("JUSIFA")

Scheme of an experiment

Data acquisition
Corrections and calibrations

Summary

Radiation source

► Excitation of the electronic shell with high-energy particles

- Excitation of the electronic shell with high-energy particles
- ► An electron is freed and exits

- Excitation of the electronic shell with high-energy particles
- An electron is freed and exits
- ► The remaining hole is filled by an electron from an outer shell

- Excitation of the electronic shell with high-energy particles
- An electron is freed and exits
- ► The remaining hole is filled by an electron from an outer shell
- ➤ The binding energy difference is ejected in the form of a photon

- Excitation of the electronic shell with high-energy particles
- An electron is freed and exits
- ► The remaining hole is filled by an electron from an outer shell
- ► The binding energy difference is ejected in the form of a photon
- ► Characteristic radiation: the energy of the photon $(h\nu = hc/\lambda)$ is the binding energy difference

- Excitation of the electronic shell with high-energy particles
- An electron is freed and exits
- ► The remaining hole is filled by an electron from an outer shell
- ► The binding energy difference is ejected in the form of a photon
- ► Characteristic radiation: the energy of the photon $(h\nu = hc/\lambda)$ is the binding energy difference
- ► The energy of the incoming particle (E_{in}) must be larger than the binding energy of the shell

- Excitation of the electronic shell with high-energy particles
- An electron is freed and exits
- ► The remaining hole is filled by an electron from an outer shell
- ► The binding energy difference is ejected in the form of a photon
- ► Characteristic radiation: the energy of the photon $(h\nu = hc/\lambda)$ is the binding energy difference
- ► The energy of the incoming particle (E_{in}) must be larger than the binding energy of the shell
- ightharpoonup $\Rightarrow h\nu < E_{\rm in}$

How an X-ray tube works?

- ► Cathode (C): heated filament, electrons exit due to the thermionic effect
- $ightharpoonup U_a$: accelerating voltage (40-100 kV): electrons accelerate towards the anode
- ► Anode (A): the incident electrons produce characteristic radiation (X)
- ► High heat load on the anode: cooling is needed! (Win, Wout)

Wavelength spectrum of the X-ray tube

- ▶ Peaks: characteristic radiation
- ► Continuous baseline: "Bremsstrahlung"

- ▶ An accelerating charged particle produces electromagnetic radiation
- ▶ The total emitted power if the acceleration is parallel to the velocity:

$$P_{a\parallel v} = rac{q^2 a^2 \gamma^6}{6\pi arepsilon_0 c^3}; \qquad ec{eta} = ec{v}/c; \qquad \gamma = rac{1}{\sqrt{1-eta^2}}$$

► Electrons decelerate in the anode ⇒ radiation!

- ▶ An accelerating charged particle produces electromagnetic radiation
- ▶ The total emitted power if the acceleration is parallel to the velocity:

$$P_{\mathsf{a}\parallel v} = rac{q^2 \mathsf{a}^2 \gamma^6}{6\pi arepsilon_0 c^3}; \qquad ec{eta} = ec{v}/c; \qquad \gamma = rac{1}{\sqrt{1-eta^2}}$$

- ► Electrons decelerate in the anode ⇒ radiation!
- ► Charged particles on a circular orbit: the velocity (as a vector) changes ⇒ centripetal acceleration

- ▶ An accelerating charged particle produces electromagnetic radiation
- ▶ The total emitted power if the acceleration is parallel to the velocity:

$$P_{\mathsf{a}\parallel v} = rac{q^2 \mathsf{a}^2 \gamma^6}{6\pi arepsilon_0 c^3}; \qquad ec{eta} = ec{v}/c; \qquad \gamma = rac{1}{\sqrt{1-eta^2}}$$

- ► Electrons decelerate in the anode ⇒ radiation!
- ► Charged particles on a circular orbit: the velocity (as a vector) changes ⇒ centripetal acceleration
- ▶ ⇒ orbiting charged particle emits electromagnetic radiation

- ▶ An accelerating charged particle produces electromagnetic radiation
- ▶ The total emitted power if the acceleration is parallel to the velocity:

$$P_{\mathsf{a}\parallel v} = rac{q^2 \mathsf{a}^2 \gamma^6}{6\pi arepsilon_0 c^3}; \qquad ec{eta} = ec{v}/c; \qquad \gamma = rac{1}{\sqrt{1-eta^2}}$$

- ► Electrons decelerate in the anode ⇒ radiation!
- ► Charged particles on a circular orbit: the velocity (as a vector) changes ⇒ centripetal acceleration
- ▶ ⇒ orbiting charged particle emits electromagnetic radiation
- ▶ Where do we encounter orbiting charged particles?

Synchrotron radiation

Electromagnetic radiation detected in the tangential direction of charged particles orbiting on a circular path

- Electron gun and linear accelerator (linac)
- Pre-accelerator ring (booster)
- 3. Storage ring
- 4. Experiment hall
- 5. Beamline
- 6. Optics hutch: mirrors, monochromators etc.
- 7. Experiment hutch
- 8. Experiment control room
- 9. Machine control room
- 10. Main building

Storage ring

Vacuum chamber: $< 10^{-8}$ mbar

RF cavity: feeding back the

emitted energy

Injector magnet: replacement of the absorbed electrons

Bending magnets: Circular orbit, producing radiation

Wigglers and undulators: periodic magnets, producing high intensity radiation

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators
- ▶ Bending magnets: Lorentz-force

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators
- ▶ Bending magnets: Lorentz-force
- Wiggler: many bending magnets after each other

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators
- ▶ Bending magnets: Lorentz-force
- Wiggler: many bending magnets after each other
- Undulator: constructive interference of radiation produced in subsequent bends

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators
- ▶ Bending magnets: Lorentz-force
- Wiggler: many bending magnets after each other
- Undulator: constructive interference of radiation produced in subsequent bends

- Charged praticles (typically electrons) orbit in bunches: synchrotrons are pulsed sources
- Feeding back lost energy and compacting bunches: RF cavities/resonators
- ▶ Bending magnets: Lorentz-force
- Wiggler: many bending magnets after each other
- Undulator: constructive interference of radiation produced in subsequent bends

Time structure of synchrotron radiation

- Intensity is not constant in time
- Long time scale: replacing the absorbed particles
 - Occasionally (4-8 hours): "injection"

Time structure of synchrotron radiation

- Intensity is not constant in time
- Long time scale: replacing the absorbed particles
 - Occasionally (4-8 hours): "injection"
 - Continuously: "top-up mode"

Time structure of synchrotron radiation

- Intensity is not constant in time
- Long time scale: replacing the absorbed particles
 - Occasionally (4-8 hours): "injection"
 - Continuously: "top-up mode"
- Short time scale: dispersion of the bunches around the orbit
 - Time-resolved experiments
 - Pump-probe techniques

Advantages of synchrotron radiation

High intensity: Short measurement times, SAXS imaging

Pulsed radiation: time-resolved experiments

Tunable wavelength: ASAXS

Beamtime proposal system

- 1. Submit a beamtime proposal: scientific topic, relevance, why do you need a synchrotron...
- 2. Proposal gets refereed
- Successful proposal: beamtime is scheduled
- 4. The experiments (1-5 days on-site)
- 5. Back home, evaluate the data (several GBytes)
- 6. "da capo al fine"

Advantages of a laboratory SAXS instrument

- High availability (it is always there)
- Can be tuned or event rebuilt
- ► The same camera, just the source is different
- Chemistry lab, sample preparation is near
- Slow measurements, but "infinite" beamtime
- Preparation for synchrotron measurements
 - Better beamtime proposal
 - Preliminary characterization/screening

Collimation

Collimation: why do we need that?

- ▶ The scattering cross-section of X-rays is really small
 - ▶ the un-scattered intensity is more than ×1000 as strong!
- ► The direct (not scatterd) radiation:
 - may damage the detector
 - a global read-out detector cannot detect the weaker scattered radiation
- ▶ Differentiation between scattered and non-scattered radiation:
 - Beam stop before the detector
 - ▶ Parallel beam with a small cross-section
- Beam shaping:
 - Optical elements: mirrors, capillaries, X-ray lenses
 - "Cutting" with slits

Slits / pinholes

Adjustable slit system

- ► Aperture changeable in two directions
- ► Rectangular beam shape

Pinholes

- ► Simple / cheap
- ► Round beam shape

Three aperture collimation scheme

Roles of the apertures

- 1. Limiting the size of the incoming beam
- 2. Limiting the divergence
- 3. Covering the parasitic scattering

Sample environment

Sample environment

Sample environment

- Air has small-angle scattering
 - ► In vacuum
 - ▶ Helium, hydrogen ($\Delta \rho$ small)
 - ► Minimizing the in-air beam path
- ▶ *In situ* measurements
 - Temperature
 - Shear
 - Magnetic field
 - Mixing

Typical sample requirements

Self-carrying solids: homogeneous platelets, cross-section larger than the beam

Liquids: vacuum-safe sample holders (glass/quartz capillaries) >20 μ l

Powders: to be avoided (strong power-law scattering from the

surfaces of powder particles)

Sample environment

Sample environment

- Air has small-angle scattering
 - ► In vacuum
 - ▶ Helium, hydrogen ($\Delta \rho$ small)
 - ► Minimizing the in-air beam path
- ▶ *In situ* measurements
 - Temperature
 - Shear
 - Magnetic field
 - Mixing

Typical sample requirements

Self-carrying solids: homogeneous platelets, cross-section larger than the beam

Liquids: vacuum-safe sample holders (glass/quartz capillaries) >20 μ l

Powders: to be avoided (strong power-law scattering from the

surfaces of powder particles)

Ideal sample thickness

- Scattered and non-scattered rays are partially absorbed by matter
- ▶ Lambert-Beer law: $I(d) = I_0 e^{-\mu d} = I_0 T$
- ▶ Scattered intensity: $I(q, d) \propto I_0 e^{-\mu d} d$
- ▶ Maximizing the scattered intensity: $\frac{\partial I(q,d)}{\partial d} = 0$

$$\frac{\partial e^{-\mu d} d}{\partial d} = -e^{-\mu d} \mu d + e^{-\mu d} = 0$$

$$1 = \mu d$$

$$d = \boxed{1/\mu}$$

▶ Water: $1/\mu \approx 1$ mm with Cu K α radiation (8048 keV, 0.15418 nm)

Beam stop

Beam stop

- Absorbing X-rays not scattered by the sample
- ▶ Intensity: non-scattered ≫ scattered
- Reasons
 - Spare the detector from high intensities
 - Avoid the scattering of matter in the beam after the sample
- ► Opaque: absorbs all photons
- Semitransparent: beam spot on the detector: easy determination of the center

Detector

Detector

- Measuring the angle-dependence of the intensity
- ► Energy resolution ↔ **position resolution**
- ► Requirements:
 - ► Good position resolution (small pixel size, minimal pixel cross-talk)
 - Linearity (the detected signal is proportional to the incoming intensity)
 - High counting speed (frequency)
 - Low noise
 - No distortions
 - Large sensor shape
- Typical types

```
Gas-filled counters: linearity, low noise, energy selectivity, slow, global readout, large pixels, aging
```

CCD detectors: fast readout, small pixel size, large electronic noise

CMOS detectors: fast readout, pratically no electronic noise,

expensive

Image plate: linearity, slow readout, cumbersome handling, aging

1. Gas-filled counting chamber

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication
- Ion- and electron avalanches hit the electrodes

Operation principle of the proportional counter

- 1. Gas-filled counting chamber
- Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication
- Ion- and electron avalanches hit the electrodes
- 7. Recombination, pulse signals

Operation principle of the proportional counter

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication
- Ion- and electron avalanches hit the electrodes
- 7. Recombination, pulse signals
- 8. Integral pulse height $\propto h
 u$

Operation principle of the proportional counter

- 1. Gas-filled counting chamber
- 2. Primary ionization by the incoming X-ray photon
- 3. Ions and electrons accelerate towards the electrodes
- 4. Secondary ionizations
- 5. Charge multiplication
- Ion- and electron avalanches hit the electrodes
- 7. Recombination, pulse signals
- 8. Integral pulse height $\propto h \nu$
- Detection of the pulses by the electronics

Outline

Recapitulation

Common SAS camera types

Characteristic parameters
Line-focus Kratky camera
Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

llimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS – CREDO Synchrotron SAXS – B1 ("JUSIFA")

Scheme of an experiment

Data acquisition

Corrections and calibrations

Summary

▶ GeniX^{3D} Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)

- ▶ GeniX^{3D} Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)
- Pilatus-300k hybrid pixel CMOS detector (619 × 478 pixel, 172 μm, noiseless, independent 20 bit counters for each pixel)

- ▶ GeniX^{3D} Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)
- Pilatus-300k hybrid pixel CMOS detector (619 × 478 pixel, 172 μm, noiseless, independent 20 bit counters for each pixel)
- ▶ 3-pinhole collimation

- ▶ GeniX^{3D} Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)
- Pilatus-300k hybrid pixel CMOS detector (619 × 478 pixel, 172 μm, noiseless, independent 20 bit counters for each pixel)
- ▶ 3-pinhole collimation
- Motorized sample stage, pinholes, beam stop

- ▶ GeniX $^{
 m 3D}$ Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)
- Pilatus-300k hybrid pixel CMOS detector (619 × 478 pixel, 172 μm, noiseless, independent 20 bit counters for each pixel)
- 3-pinhole collimation
- Motorized sample stage, pinholes, beam stop

- ▶ GeniX^{3D} Cu ULD X-ray generator (30 W, $\lambda = 0.154$ nm, divergence <0.4 mrad HW20%M)
- Pilatus-300k hybrid pixel CMOS detector (619 × 478 pixel, 172 μm, noiseless, independent 20 bit counters for each pixel)
- 3-pinhole collimation
- Motorized sample stage, pinholes, beam stop
- Self-developed, automated data acquisition software
 - Instrument control
 - Carrying out the needed corrections and calibrations automatically

https://credo.ttk.mta.hu

- ▶ Jülich's User-dedicated Scattering Facility
- Deutsches Elektronensynchrotron (DESY), Hamburg
- ► DORIS III storage ring
- dedicated instrument for ASAXS (anomalous SAXS)
- ► Gabriel MWPC, Pilatus-300k, Pilatus-1M detectors
- **▶** *1989 †2012

Outline

Recapitulation

Common SAS camera types

Characteristic parameters
Line-focus Kratky camera
Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

llimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS – CREDO Synchrotron SAXS – B1 ("JUSIFA"

Scheme of an experiment

Data acquisition
Corrections and calibrations

Procedure of a "typical" SAXS experiment

- 1. Turn on the instrument, warm up the X-ray tube (45 minutes)
- 2. Optimize the geometry (30-45 mins)
 - ightharpoonup Sample-to-detector size, beam stop size \Rightarrow smallest attainable q
 - ► Select pinhole sizes and spacings: no parasitic scattering, highest intensity at the sample
- 3. Sample preparation, capillary filling (1/2-2 hours)
 - ightharpoonup pprox 1 mm borosilicate glass capillaries
 - ► Sealing: 2-component epoxy resin / melting
- 4. Preparation measurements: search for sample motor positions, measure transmissions (30-45 mins)
- 5. Automatic measurement sequence (several hours / overnight)
 - 5.1 Blank measurements (dark current, empty beam)
 - 5.2 Reference samples $(q, d\sigma/d\Omega)$
 - 5.3 Samples
 - 5.4 Repeat...

Distribution of the measurement time

It is useful to measure many short exposures instead of one long

- Time resolution (TRSAXS)
- ► Frequent re-measuring of references
- Assessment of the stability of the samples and the instrument
- ▶ Excluding affected exposures with statistical tests:
 - ▶ Difference of the j-th and j'-th scattering curve:

$$\Delta_{jj'} = \left\{ egin{array}{ll} \sum_k \left(I_j(q_k) - I_{j'}(q_k)
ight)^2 & ext{if} \quad j
eq j' \ \left< \Delta_{jl} \right>_{l
eq j} & ext{if} \quad j = j' \end{array}
ight.$$

▶ Replacing the diagonal items with row averages: Δ_{jj} → how much does the *j*-th curve differ from all the others

Calibrating the scattering variable

- ▶ Purpose: get the corresponding q for each (p_x, p_y) pixe \bigvee
- If the direct beam would hit the detector at (c_x, c_y) , the pixel size is h and L is the sample-to-detector distance:

$$2\theta = \tan^{-1}\frac{r}{L}; \quad r = h\sqrt{(p_x - c_x)^2 + (p_y - c_y)^2}$$

$$q=rac{4\pi}{\lambda}\sin\left(rac{1}{2} an^{-1}\left(rac{h\sqrt{(p_{x}-c_{x})^{2}+(p_{y}-c_{y})^{2}}}{L}
ight)
ight)$$

Calibrating of the scattering variable

- The sample-to-detector distance is tricky to measure directly
- Calibration samples: silver-stearate, silver-behenate, SBA15, LaB₆, tripalmitine...
 - high intensity, sharp peaks in the scattering
 - stable: vs. time and vs. temperature
 - peak positions are known
- ► Principle of finding the sample-to-detector distance:
 - ▶ Peak positions are known (qi)
 - Measured peak positions in pixel units (p_i)
 - Fitting of the function

$$q = \frac{4\pi}{\lambda} \sin \left(\frac{1}{2} \underbrace{\tan^{-1} (ph/L)}_{2\theta} \right) \rightarrow$$
determine L

Calibration of the scattering intensity

- ▶ Purpose: scale the count rates to differential scattering cross-section (cm⁻¹ sr⁻¹)
- ▶ Independent from instrumental parameters:
 - Sample thickness
 - Beam shape and intensity
 - Quantum efficiency¹ of the detector
 - Measurement geometry
- Many parameters cannot be measured
- ► Reference sample:
 - Strong scattering
 - "Flat" scattering curve (not sensitive to miscalibrations in q)
 - Intensity is known in absolute units
 - Measured with other methods (e.g. glassy carbon, lupolen)
 - Known from theory (e.g. water, nanoparticle suspension)
- ► Measure the reference sample and your samples under the same conditions → the same intensity scaling factor applies

¹The probability of the detection of an incoming photon $\rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \leftarrow \bigcirc \rightarrow \rightarrow \bigcirc \rightarrow \bigcirc \bigcirc \bigcirc$

Intensity calibration with glassy carbon

If the curves are appropriately corrected, the scaling factor is the inverse of the beam flux!

Outline

Recapitulation

Common SAS camera types

Characteristic parameters
Line-focus Kratky camera
Point focus (pinhole) camera

Main components

Radiation source

X-ray tube Synchrotron

llimation

Sample environment

Beam stop

Detector

Two example instruments

Laboratory SAXS - CREDO

Synchrotron SAXS - B1 ("JUSIFA")

Scheme of an experiment

Data acquisition

Corrections and calibrations

Summary

Summary

- Types of SAXS instruments
 - Line focus compact Kratky camera
 - ► Pinhole camera
- Operation principle of the X-ray generator
 - Characteristic radiation and bremsstrahlung
- Synchrotrons
 - Accelerators, storage ring
 - Insertion devices for beam production
 - Time structure
- Main parts of SAXS instruments
 - Source, detector, sample stage, collimation . . .
- ▶ Data collection
 - corrections, calibrations
 - data collection strategies (many a little makes a mickle...)

Next lecture: Interpretation of SAXS results with actual examples

Thank you for your attention!

