Small-angle X-ray scattering - a (mostly) theoretical introduction to the basics

András Wacha

Research Centre for Natural Sciences, Hungarian Academy of Sciences

Contents

Introduction

A bit of history
The principle of scattering
Small- and wide-angle scattering
Basics
Scattering pattern and scattering curve
Scattering cross-section
Scattering variable
Scattering contrast
Basic relations of scattering
Connection between structure and scattering Phase problem
Spherically symmetric systems
The Guinier Approximation
Multi-particle systems, size distribution
Power-law scattering: the Porod region
The pair density distribution function
Summary

Contents

Introduction
A bit of history
The principle of scattering
Small- and wide-angle scattering

```
Basics
    Scattering pattern and scattering curve
    Scattering cross-section
    Scattering variable
    Scattering contrast
Basic relations of scattering
    Connection between structure and scattering
    Phase problem
    Spherically symmetric systems
    The Guinier Approximation
    Multi-particle systems, size distribution
    Power-law scattering: the Porod region
    The pair density distribution function
```


History of (small-angle) scattering

- "Even the ancient greeks..."
- Scattering: XVII-XIX. century (Huygens, Newton, Young, Fresnel. . .)
- X-rays: 1895 (Wilhelm Konrad Röntgen)
- X-ray diffraction on crystals: W.H. és W.L. Bragg (1912), M. von Laue, P. Debye, P. Scherrer. . . (-1930)
- First observation of small-angle scattering: P. Krishnamurti, B.E. Warren (kb. 1930)
- Mathematical formalism and theory of small-angle scattering: André Guinier, Peter Debye, Otto Kratky, Günther Porod, Rolf Hosemann, Vittorio Luzzati (1940-1960)

The principle of scattering

Sample

Primary beam

The principle of scattering

The principle of scattering

SAXS vs. WAXS

- Principle of scattering: probe particles \rightarrow interaction with the structure \rightarrow deflection \rightarrow detection \rightarrow structure determination

- Measurement: the "intensity" of radiation deflected in different directions
- Strong forward scattering (logarithmic scale!)
- Wide-angle scattering: Bragg equation (cf. previous lecture)
- Small-angle scattering: ...

Small- and wide-angle X-ray scattering

Scattering of a spherical nanocrystallite (simple cubic lattice)

- Wide-angle scattering: crystal structure

Small- and wide-angle X-ray scattering

Scattering of a spherical nanocrystallite (simple cubic lattice)

- Wide-angle scattering: crystal structure
- Small-angle scattering: the overall size of the crystallite

Small- and wide-angle X-ray scattering

Scattering of a spherical nanocrystallite (simple cubic lattice)

- Wide-angle scattering: crystal structure
- Small-angle scattering: the overall size of the crystallite
- Small-angle scattering is blind on the atomic level: equivalence of homogeneous and discrete atomic structures

Small-angle scattering

- Small-Angle X-ray Scattering - SAXS
- Elastic scattering of X-rays on electrons
- Measurement: "intensity" versus the scattering angle
- Results: electron-density inhomogeneities on the 1-100 length scale
- But: indirect results, difficult to interpret (\odot)
- Typical experimental conditions:
- Transmission geometry
- High intensity, nearly point-collimated beam
- Two-dimensional position sensitive detector

Contents

Introduction

A bit of history
The principle of scattering
Small- and wide-angle scattering
Basics
Scattering pattern and scattering curve
Scattering cross-section
Scattering variable
Scattering contrast
Basic relations of scattering
Connection between structure and scattering
Phase problem
Spherically symmetric systems
The Guinier Approximation
Multi-particle systems, size distribution
Power-law scattering: the Porod region
The pair density distribution function

Scattering pattern - scattering curve

- Scattering pattern: matrix of incidence counts
- Numerical values in the pixels: the number of the photons received
- Each pixel has a corresponding scattering angle
- Scattering curve
- The same information in a more tractable form
- Obtained by azimuthally averaging the scattering pattern:

1. Grouping of pixels corresponding to the same scattering angle
2. Averaging of the intensities

- Dependent variable: intensity ("count rate")
- Independent variable: scattering variable ("distance from the center")

Scattering cross-section

- The sample under investigation (scatterer)

Scattering cross-section

- The sample under investigation (scatterer)
- Incident particle current density: $j_{i n}=N_{i n} /(A \cdot t)$

$$
\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]
$$

Scattering cross-section

- The sample under investigation (scatterer)
- Incident particle current density: $j_{i n}=N_{\text {in }} /(A \cdot t)$

$$
\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]
$$

- Total scattered particle current: $l_{\text {out }}=N_{\text {out }} / t$

$$
\left[s^{-1}\right]
$$

Scattering cross-section

- The sample under investigation (scatterer)
- Incident particle current density: $j_{i n}=N_{i n} /(A \cdot t)$
- Total scattered particle current: $l_{\text {out }}=N_{\text {out }} / t$

$$
\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]
$$

$$
\left[s^{-1}\right]
$$

- Scattering cross-section: $\Sigma \equiv I_{\text {out }} / j_{\text {in }}=A \cdot N_{\text {out }} / N_{\text {in }}$

$$
\left[\mathrm{cm}^{2}\right]
$$

Scattering cross-section

- The sample under investigation (scatterer)
- Incident particle current density: $j_{i n}=N_{i n} /(A \cdot t)$
- Total scattered particle current: $I_{\text {out }}=N_{\text {out }} / t$
- Scattering cross-section: $\Sigma \equiv I_{\text {out }} / j_{\text {in }}=A \cdot N_{\text {out }} / N_{\text {in }}$
- differential scattering cross-section: $d \Sigma / d \Omega$

$$
\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]
$$

$$
\left[s^{-1}\right]
$$

$$
\left[\mathrm{cm}^{2}\right]
$$

$\left[\mathrm{cm}^{2} \mathrm{sr}^{-1}\right]$

Scattering cross-section

- The sample under investigation (scatterer)
- Incident particle current density: $j_{i n}=N_{\text {in }} /(A \cdot t)$
- Total scattered particle current: $I_{\text {out }}=N_{\text {out }} / t$

$$
\left[s^{-1}\right]
$$

- Scattering cross-section: $\Sigma \equiv I_{\text {out }} / j_{\text {in }}=A \cdot N_{\text {out }} / N_{\text {in }}$
- differential scattering cross-section: $d \Sigma / d \Omega$

$$
\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]
$$

- Normalized to unit sample volume: $\frac{d \sigma}{d \Omega} \equiv \frac{1}{V} \frac{d \Sigma}{d \Omega}$

The scattering variable

- The natural variable of the intensity is the scattering vector:

$$
\vec{q} \equiv \vec{k}_{2 \theta}-\vec{k}_{0} \quad\left[\vec{s} \equiv \vec{S}_{2 \theta}-\vec{S}_{0}=\vec{q} /(2 \pi)\right]
$$

i.e. the vectorial difference of the wave vectors of the scattered and the incident radiation

- [Wave vector: points in the direction of wave propagation, magnitude is $2 \pi / \lambda]$
- Physical meaning: the momentum acquired by the photon upon scattering (\rightarrow "momentum transfer")

- Magnitude: $\left.q=|\vec{q}|=4 \pi \frac{\sin \theta}{\lambda} \underset{\text { small angles }}{\approx} 4 \pi \theta / \lambda \quad[s=2 \sin \theta / \lambda]\right)$
- Bragg-equation: $q=2 \pi n / d \quad n \in \mathbb{Z}$ $[s \equiv n / d]$

The scattering contrast

- X-rays are scattered by electrons
- Scattering contrast $=$ relative electron density with respect to the average
- Only the relative electron density counts!
- Small contrast: weak scattering signal
- Water: $333.3 \mathrm{e}^{-} / \mathrm{nm}^{3}$ (homework to calculate)
- SiO_{2} nanoparticles: $660-800 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Proteins: $400-450 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Determined by:
- Mass density of the matter (e.g. solid copolimers)
- Presence of elements with high atomic numbers
- Choice of solvent (mean electron density)

The scattering contrast

- X-rays are scattered by electrons
- Scattering contrast $=$ relative electron density with respect to the average
- Only the relative electron density counts!
- Small contrast: weak scattering signal
- Water: $333.3 \mathrm{e}^{-} / \mathrm{nm}^{3}$ (homework to calculate)
- SiO_{2} nanoparticles: $660-800 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Proteins: $400-450 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Determined by:
- Mass density of the matter (e.g. solid copolimers)
- Presence of elements with high atomic numbers
- Choice of solvent (mean electron density)

The scattering contrast

- X-rays are scattered by electrons
- Scattering contrast $=$ relative electron density with respect to the average
- Only the relative electron density counts!
- Small contrast: weak scattering signal
- Water: $333.3 \mathrm{e}^{-} / \mathrm{nm}^{3}$ (homework to calculate)
- SiO_{2} nanoparticles: $660-800 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Proteins: $400-450 \mathrm{e}^{-} / \mathrm{nm}^{3}$
- Determined by:
- Mass density of the matter (e.g. solid copolimers)
- Presence of elements with high atomic numbers
- Choice of solvent (mean electron density)

Recapitulation of the basic quantities

Intensity: or differential scattering cross-section

- the proportion of the particles...
- ... incoming in a unit cross section...
- ... over unit time. .
- . . . onto a sample of unit volume. . .
- ... which is scattered in a given direction. . .
- ... under unit solid angle.

Scattering variable (q) : or momentum transfer: characterizing the angle dependence.

- Magnitude $\propto \sin \theta \approx \theta$
- $\hbar \vec{q}$: the momentum acquired by the photon due to the interaction with the sample
Scattering contrast: scattering potential of given part of the sample in comparison with its environment
- This is the relative electron density in case of X-ray scattering

Contents

Introduction
A bit of history
The principle of scattering
Small- and wide-angle scattering
Basics
Scattering pattern and scattering curve
Scattering cross-section
Scattering variable
Scattering contrast
Basic relations of scattering
Connection between structure and scattering
Phase problem
Spherically symmetric systems
The Guinier Approximation
Multi-particle systems, size distribution
Power-law scattering: the Porod region
The pair density distribution function

Connection between structure and scattering

- Scattering on the inhomogeneities of the electron density \Rightarrow characterization of the structure with the relative electron density function:

$$
\Delta \rho(\vec{r})=\rho(\vec{r})-\bar{\rho}
$$

(in the following we omit Δ !)

- The amplitude of the scattered radiation:

$$
A(\vec{q})=\iiint_{V} \rho(\vec{r}) e^{-i \vec{q} \vec{r}} \mathrm{~d}^{3} \vec{r}
$$

which is formally the Fourier transform of the electron density.

- Only the intensity can be measured: $I=|A|^{2}$

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)
- Even more frequency components

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)
- Even more frequency components
- The relative weights of the frequency components is also given

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)
- Even more frequency components
- The relative weights of the frequency components is also given
- "Inside the black box": $F(\nu)=\int f(t) e^{-i \nu t} d t$

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?

- Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)
- Even more frequency components
- The relative weights of the frequency components is also given
- "Inside the black box": $F(\nu)=\int f(t) e^{-i \nu t} d t$
- Can be inverted (although...): $f(t)=\frac{1}{2 \pi} \int F(\nu) e^{i t \nu} d \nu$

The phase problem

- The Fourier transform is invertible (?!): the amplitude unambiguously describes the scattering structure
- Complex quantities:

$$
z=a+b i=A e^{i \phi}
$$

- Absolute square (this is how we get the intensity):

$$
|z|^{2}=z \cdot z^{*}=A e^{i \phi} \cdot A e^{-i \phi}=A^{2}
$$

- Where did the ϕ phase go?!
- Because the scattered amplitude cannot be measured, there is no chance to fully recover the structure just from scattering.
- Another problem: the intensity can only be measured in a subspace of the \vec{q} space: only an incomplete inversion of the Fourier transform can be done.

How big is this problem?

How big is this problem?

How big is this problem?

Idea from Saldin et. al. J. Phys.: Condens. Matter 13 (2001) 10689-10707

How big is this problem?

Idea from Saldin et. al. J. Phys.: Condens. Matter 13 (2001) 10689-10707

How big is this problem?

- The phase carries most of the information!

How big is this problem?

- The phase carries most of the information!
- The operation of taking the square root is ambiguous over the complex plane (there are ∞ complex numbers with $|z|=1$)!

What can be done / Is this really a problem?

The scattering of vastly different structures can be undiscernible

1. Solution: determination of "robust" parameters (see later)

- Guinier radius
- Power-law exponent
- Porod-volume
- ...

2. Solution: model fitting

- Choosing the specimen from a model-specimen described by given parameters which best fits the scattering curve
- If the model ensemble is narrow enough, the $\rho(\vec{r}) \leftrightarrow I(\vec{q})$ mapping can be unique
- A priori knowledge, results of other experiments are indispensable!

3. "Guessing" the phase (crystallography) or measuring it (holography)

Bragg's law: a special case

- The sample is periodic (d repeat distance)
- θ : incidence and exit angle
- Constructive interference in the detector: the rays reflected from neighbouring planes reach the detector in phase

- Path difference: $\Delta s=n \lambda$ where $n \in \mathbb{N}$
- From simple geometry:
$\Delta s=2 d \sin \theta$
- $2 d \sin \theta=n \lambda$
- $\frac{4 \pi}{\lambda} \sin \theta=\frac{2 \pi}{d} n$
- $q=\frac{2 \pi}{d} n$

Detour/recap: spherical coordinates

- Descartes: x, y, z
- Spherical:
- $x=r \sin \theta \cos \varphi$,
- $y=r \sin \theta \sin \varphi$,
- $z=r \cos \theta$
- Infinitesimal volume:
$d x d y d z=d V=r^{2} \sin \theta d r d \theta d \varphi$
- Integral:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) d x d y d z= \\
= & \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{\infty} f(r, \theta, \varphi) r^{2} \sin \theta d r d \theta d \varphi
\end{aligned}
$$

Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$
I(\vec{q})=\left|\iiint \rho(\vec{r}) e^{-i \vec{q} \vec{r}} \mathrm{~d}^{3} \vec{r}\right|^{2}
$$

Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$
I(\vec{q})=\left|\iiint \rho(\vec{r}) e^{-i \vec{q} \vec{r}} \mathrm{~d}^{3} \vec{r}\right|^{2}
$$

Let us derive the (small-angle) scattering intensity of a sphere which has a radius R and ρ_{0} homogeneous electron density inside!

Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$
I(\vec{q})=\left|\iiint \rho(\vec{r}) e^{-i \vec{q} \vec{r}} \mathrm{~d}^{3} \vec{r}\right|^{2}
$$

Let us derive the (small-angle) scattering intensity of a sphere which has a radius R and ρ_{0} homogeneous electron density inside!
Electron-density function of an isotropic object: $\rho(\vec{r})=\rho(|\vec{r}|)=\rho(r)$. The integral can be simpified in spherical coordinates:

$$
I(\vec{q})=\left|\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\infty} \mathrm{d} r r^{2} \rho(r) \int_{0}^{\pi} \sin \theta \mathrm{d} \theta e^{-i|\vec{a}| \cdot|\vec{r}| \cos \theta}\right|^{2}
$$

Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$
I(\vec{q})=\left|\iiint \rho(\vec{r}) e^{-i \vec{q} \vec{r}} \mathrm{~d}^{3} \vec{r}\right|^{2}
$$

Let us derive the (small-angle) scattering intensity of a sphere which has a radius R and ρ_{0} homogeneous electron density inside!
Electron-density function of an isotropic object: $\rho(\vec{r})=\rho(|\vec{r}|)=\rho(r)$. The integral can be simpified in spherical coordinates:

$$
I(\vec{q})=\left|\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\infty} \mathrm{d} r r^{2} \rho(r) \int_{0}^{\pi} \sin \theta \mathrm{d} \theta e^{-i|\vec{a}| \cdot|\vec{r}| \cos \theta}\right|^{2}
$$

where z has been chosen to be parallel with \vec{q} (can be done due to the spherical symmetry of $\rho(\vec{r})$)

Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$
I(\vec{q})=\left|\iiint \rho(\vec{r}) e^{-i \vec{q} \vec{d}} \mathrm{~d}^{3} \vec{r}\right|^{2}
$$

Let us derive the (small-angle) scattering intensity of a sphere which has a radius R and ρ_{0} homogeneous electron density inside!
Electron-density function of an isotropic object: $\rho(\vec{r})=\rho(|\vec{r}|)=\rho(r)$. The integral can be simpified in spherical coordinates:

$$
I(\vec{q})=\left|\int_{0}^{2 \pi} \mathrm{~d} \phi \int_{0}^{\infty} \mathrm{d} r r^{2} \rho(r) \int_{0}^{\pi} \sin \theta \mathrm{d} \theta e^{-i|\vec{a}| \cdot|\vec{r}| \cos \theta}\right|^{2}
$$

where z has been chosen to be parallel with \vec{q} (can be done due to the spherical symmetry of $\rho(\vec{r})$)
Substitution of $u=\cos \theta$:

$$
I(\vec{q})=|\underbrace{\int_{0}^{2 \pi} \mathrm{~d} \phi}_{2 \pi} \int_{0}^{\infty} r^{2} \rho(r) \mathrm{d} r \int_{-1}^{1} \mathrm{~d} u e^{-i q r u}|^{2}
$$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$
\int_{-1}^{1} \mathrm{~d} u e^{-i q r u}=\left[\frac{1}{-i q r} e^{-i q r u}\right]_{-1}^{1}
$$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$
\int_{-1}^{1} \mathrm{~d} u e^{-i q r u}=\left[\frac{1}{-i q r} e^{-i q r u}\right]_{-1}^{1}
$$

Employing $e^{i \phi}=\cos \phi+i \sin \phi$:

$$
\frac{1}{-i q r}\left[e^{-i q r}-e^{i q r}\right]=\frac{1}{i q r}[2 i \sin (q r)]=\frac{2 \sin (q r)}{q r}
$$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$
\int_{-1}^{1} \mathrm{~d} u e^{-i q r u}=\left[\frac{1}{-i q r} e^{-i q r u}\right]_{-1}^{1}
$$

Employing $e^{i \phi}=\cos \phi+i \sin \phi$:

$$
\frac{1}{-i q r}\left[e^{-i q r}-e^{i q r}\right]=\frac{1}{i q r}[2 i \sin (q r)]=\frac{2 \sin (q r)}{q r}
$$

which leads to

$$
I(\vec{q})=I(q)=(4 \pi)^{2}\left|\int_{0}^{R} \rho(r) r^{2} \frac{\sin (q r)}{q r} \mathrm{~d} r\right|^{2}
$$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$
\int_{-1}^{1} \mathrm{~d} u e^{-i q r u}=\left[\frac{1}{-i q r} e^{-i q r u}\right]_{-1}^{1}
$$

Employing $e^{i \phi}=\cos \phi+i \sin \phi$:

$$
\frac{1}{-i q r}\left[e^{-i q r}-e^{i q r}\right]=\frac{1}{i q r}[2 i \sin (q r)]=\frac{2 \sin (q r)}{q r}
$$

which leads to

$$
I(\vec{q})=I(q)=(4 \pi)^{2}\left|\int_{0}^{R} \rho(r) r^{2} \frac{\sin (q r)}{q r} \mathrm{~d} r\right|^{2}
$$

- The scattering intensity of an isotropic system is also isotropic: depends only on $|\vec{q}|$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$
\int_{-1}^{1} \mathrm{~d} u e^{-i q r u}=\left[\frac{1}{-i q r} e^{-i q r u}\right]_{-1}^{1}
$$

Employing $e^{i \phi}=\cos \phi+i \sin \phi$:

$$
\frac{1}{-i q r}\left[e^{-i q r}-e^{i q r}\right]=\frac{1}{i q r}[2 i \sin (q r)]=\frac{2 \sin (q r)}{q r}
$$

which leads to

$$
I(\vec{q})=I(q)=(4 \pi)^{2}\left|\int_{0}^{R} \rho(r) r^{2} \frac{\sin (q r)}{q r} \mathrm{~d} r\right|^{2}
$$

- The scattering intensity of an isotropic system is also isotropic: depends only on $|\vec{q}|$
- The scattering amplitude of an isotropic system (more precisely where $\rho(\vec{r})=\rho(-\vec{r}))$ is real

Small-angle scattering of a sphere (III)

The electron-density function of a homogeneous sphere is:

$$
\rho(\vec{r})=\left\{\begin{array}{cc}
\rho_{0} & \text { if }|\vec{r}| \leq R \\
0 & \text { otherwise. }
\end{array}\right.
$$

Evaluating the previous integral:

$$
\begin{aligned}
\operatorname{Ig}_{\mathrm{g}}(q) & =\left(\frac{4 \pi \rho_{0}}{q^{3}}(\sin (q R)-q R \cos (q R))\right)^{2} \\
& =\rho_{0}^{2}(\underbrace{\frac{4 \pi R^{3}}{3}}_{V} \underbrace{\frac{3}{q^{3} R^{3}}(\sin (q R)-q R \cos (q R))}_{P_{g}(q R)})^{2}
\end{aligned}
$$

- The scattered intensity scales with the 6th power of the linear size $\left(I \propto V^{2} \propto R^{6}\right)$

Small-angle scattering of a sphere (IV)

Small-angle scattering of a sphere (IV)

- Log-log plotting is good $)^{-}$

Small-angle scattering of a sphere (IV)

- Log-log plotting is good ©
- $q R<1$ approximation: $I \approx e^{-\frac{q^{2} R^{2}}{5}}$ (Guinier)

Small-angle scattering of a sphere (IV)

- Log-log plotting is good $)^{-}$
- $q R<1$ approximation: $I \approx e^{-\frac{q^{2} R^{2}}{5}}$ (Guinier)

The Guinier approximation

- André Guinier: the low- q scattering of dilute nanoparticle suspensions follows a Gaussian curve
- Generally:

$$
I(q \approx 0)=I_{0} e^{-\frac{q^{2} R_{g}^{2}}{3}}
$$

- Radius of gyration (or Guinier radius): describes the linear size of a scattering object. By definition:

$$
R_{g} \equiv \sqrt{\frac{\iiint_{V} r^{2} \rho(\vec{r}) \mathrm{d}^{3} \vec{r}}{\iiint_{V} \rho(\vec{r}) \mathrm{d}^{3} \vec{r}}}
$$

- Connection between the shape parameters and R_{g} :
- sphere: $R_{g}=\sqrt{3 / 5} R$
- spherical shell: $R_{g}=R$
- cylinder: $\sqrt{\frac{R^{2}}{2}+\frac{L^{2}}{12}}$
- linear polymer chain: $N b^{2} / 6$
- ...

Guinier plot

$-I \approx I_{0} e^{-\frac{q^{2} R_{g}^{2}}{3}}$

Guinier plot

$-I \approx I_{0} e^{-\frac{q^{2} R_{g}^{2}}{3}}$

- $\ln I \approx \ln I_{0}-\frac{R_{g}^{2}}{3} q^{2}$

Guinier plot

$-I \approx I_{0} e^{-\frac{q^{2} R_{g}^{2}}{3}}$

- $\ln I \approx \ln I_{0}-\frac{R_{g}^{2}}{3} q^{2}$
- $\ln I-q^{2}$: first order polynomial
- Visual check on the validity of the Guinier approximation

The validity of the Guinier approximation

- The Guinier approximation holds for nearly monodisperse particulate systems too (see next slides)
- Nearly spherical particles: $q R_{g} \lesssim 3$
- Anisotropic particles: $q R_{g} \lesssim 0.7$
- Upturn at small q ("smiling Guinier"): attraction between the particles (aggregation)
- Downturn at small q ("frowning Guinier"): repulsive interaction between the particles
- More details will be given for protein scattering later...

André Guinier (1911-2000)

The effect of polydispersity

Multi-particle system:

$$
\rho(\vec{r})=\sum_{j} \rho_{j}\left(\vec{r}-\vec{R}_{j}\right)
$$

Scattering amplitude:

$$
\begin{aligned}
A(\vec{q}) & =\sum_{j} A_{j}(\vec{q}) \\
& =\sum_{j} A_{j, 0}(\vec{q}) e^{-i \vec{q} \vec{R}_{j}}
\end{aligned}
$$

Intensity:

$$
\begin{aligned}
I(\vec{q}) & =A(\vec{q}) A^{*}(\vec{q}) \\
& =\sum_{j} \sum_{k} A_{j}(\vec{q}) A_{k}^{*}(\vec{q}) e^{i \vec{q}\left(\vec{R}_{k}-\vec{R}_{j}\right)}
\end{aligned}
$$

Shifting of the electron density function by \vec{R} :

$$
A_{\text {shifted }}(\vec{q})=A_{0}(\vec{q}) e^{-i \vec{q} \vec{R}}
$$

Multi-particle system

$$
I(\vec{q})=\sum_{j} \sum_{k} A_{j}(\vec{q}) A_{k}^{*}(\vec{q}) e^{i \vec{q}\left(\vec{R}_{k}-\vec{R}_{j}\right)}=\underbrace{\sum_{j} I_{j}(\vec{q})}_{\text {incoherent }}+\underbrace{\sum_{j} \sum_{k \neq j} A_{j}(\vec{q}) A_{k}^{*}(\vec{q}) e^{i \vec{q}\left(\vec{R}_{k}-\vec{R}_{j}\right)}}_{\text {interference term }}
$$

- Incoherent sum: the intensity of the distinct particles is summarized
- Cross-terms: interference from the correlated relative positions of the particles
- Special case: identical, spherically symmetric particles

$$
I(q)=\rho_{0}^{2} V^{2} P_{g}(q R)^{2} N \underbrace{\left\{1+\frac{2}{N} \sum_{j} \sum_{k>j} \cos \left(\vec{q}\left(\vec{R}_{k}-\vec{R}_{j}\right)\right)\right\}}_{S(q)}
$$

- Structure factor: depends only on the relative positions of the distinct particles but not on their shape
- Uncorrelated system: $S(q)=1$. Otherwise the Guinier region is distorted!

Size distribution

There's no such thing as a fully monodisperse system.

Size distribution

There's no such thing as a fully monodisperse system.

Size distribution

There's no such thing as a fully monodisperse system.

Size distribution

There's no such thing as a fully monodisperse system.

Scattering of a slightly polydisperse suspension of nanoparticles

- Scattering of a dilute nanoparticle suspension:

$$
I(q)=
$$

- If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.

- Statistically significant ($\approx 10^{9}$ particles in $1 \mathrm{~mm}^{3}$)
- Accurate sizes with well-defined uncertainties (SI "traceability")

Scattering of a slightly polydisperse suspension of nanoparticles

- Scattering of a dilute nanoparticle suspension:

$$
I(q)=
$$

- If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.

- Statistically significant ($\approx 10^{9}$ particles in $1 \mathrm{~mm}^{3}$)
- Accurate sizes with well-defined uncertainties (SI "traceability")

Scattering of a slightly polydisperse suspension of nanoparticles

- Scattering of a dilute nanoparticle suspension:

$$
I(q)=\underbrace{\rho_{0}^{2}}_{\text {contrast }} \cdot \underbrace{V_{R}}_{\text {volume }}{ }^{2} \cdot \underbrace{P^{2}(q R)}_{\text {form factor }}
$$

- If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.

- Statistically significant ($\approx 10^{9}$ particles in $1 \mathrm{~mm}^{3}$)
- Accurate sizes with well-defined uncertainties (SI "traceability")

Scattering of a slightly polydisperse suspension of nanoparticles

- Scattering of a dilute nanoparticle suspension:

$$
I(q)=\underbrace{\mathcal{P}(R)}_{\text {size distribution }} \cdot \underbrace{\rho_{0}^{2}}_{\text {contrast }} \cdot \underbrace{V_{R}}_{\text {volume }}{ }^{2} \cdot \underbrace{P^{2}(q R)}_{\text {form factor }}
$$

- If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.

- Statistically significant ($\approx 10^{9}$ particles in $1 \mathrm{~mm}^{3}$)
- Accurate sizes with well-defined uncertainties (SI "traceability")

Scattering of a slightly polydisperse suspension of nanoparticles

- Scattering of a dilute nanoparticle suspension:

$$
I(q)=\int_{0}^{\infty} \underbrace{\mathcal{P}(R)}_{\text {size distribution }} \cdot \underbrace{\rho_{0}^{2}}_{\text {contrast }} \cdot \underbrace{V_{R}}_{\text {volume }}{ }^{2} \cdot \underbrace{P^{2}(q R)}_{\text {form factor }} \mathrm{d} R
$$

- If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.

- Statistically significant ($\approx 10^{9}$ particles in $1 \mathrm{~mm}^{3}$)
- Accurate sizes with well-defined uncertainties (SI "traceability")

Bimodal nanoparticle distribution

Model-independent approach

- The $\mathcal{P}(R)$ size distribution function is obtained in a histogram form.
- Large number of model parameters \Rightarrow danger of "overfitting"

Power-law behaviour

Power-law behaviour

The Porod region

- Power-law decreases are frequently found in scattering curves: $I \propto q^{-\alpha}$.
- Particles with smooth surfaces: $I(q \rightarrow \infty) \propto \frac{S}{V} q^{-4}$: specific surface!
- Solutions of unbranched polymers:
- Ideal solvent (Θ-solution): random walk following Gaussian statistics: $I(q) \propto q^{-2}$
- Bad solvent: self-attracting random walk: $I(q) \propto q^{-3}$
- Good solvent: self-avoiding random walk: $I(q) \propto q^{-3 / 5}$
- Surface and mass fractals...

Detour: fractals

- Self-similar systems: showing the same shapes even in different magnifications
- Nanosystems with fractal properties:
- Activated carbon
- Porous minerals
- Uneven surfaces
- Characterization: Hausdorff-dimension (fractal dimension)

Fractal dimension

- Measure the area of the Sierpińsky carpet with different unit lengths
- Connection between the unit length and the required unit areas to cover the carpet:

Length unit	1	$1 / 3$	$1 / 9$	\ldots	3^{-n}
Required unit areas	1	8	64	\ldots	8^{n}

- A Hausdorff dimension: how the number of required unit areas (A) scales with the unit length (a)?

$$
\begin{gathered}
a=1 / 3^{n} \rightarrow n=-\log _{3} a \\
A=8^{n}=8^{-\log _{3} a}=8^{-\frac{\log _{8} a}{\log _{8} 3}}=a^{\log _{8} 3}=a^{\frac{\ln 3}{\ln 8}}=a^{-d}
\end{gathered}
$$

- The fractal dimension of the Sierpińsky carpet is $\ln 8 / \ln 3 \approx 1.8928<2$
- For a simple square:
$A=a^{-2}$, i.e. the fractal dimension is the same as the Euclidean

Fractal dimension on the scattering curve

The pair density distribution function - back to the real space

- There is another route connecting the electron density and the scattered intensity
- The $p(r)$ pair density distribution function (PDDF) is the self-correlation of the electron density.
- $p(r)=\mathcal{F}^{-1}[I(q)]$ real space information.
- Physical meaning: find all the possible point pairs inside the particle and make a histogram from their distances

The PDDFs of some geometrical shapes

Contents

Introduction

A bit of history
The principle of scattering
Small- and wide-angle scattering

Basics

Scattering pattern and scattering curve
Scattering cross-section
Scattering variable
Scattering contrast

Basic relations of scattering

Connection between structure and scattering
Phase problem
Spherically symmetric systems
The Guinier Approximation
Multi-particle systems, size distribution
Power-law scattering: the Porod region
The pair density distribution function

Summary

Summary - Pros and cons of scattering experiments

Advantages

- Statistically significant average results
- Simple measurement principle
- Separation of length scales (SAXS is blind for atomic sizes)
- Accurate quantitative results, traceable to the definitions of the SI units of measurement

Disadvantages

- Nonintuitive, indirect measurement results \rightarrow difficult interpretation
- Cannot be used on too complex systems
- Possible ambiguity of the determined structure (phase problem)
- Measures mean values: no means for getting results on structural forms present in low concentrations

Summary, outlook

Summary

- Structure determination by scattering
- Intensity, momentum transfer, scattering pattern, scattering curve
- Fourier transform, absolute square, phase problem
- Scattering of a homogeneous sphere, Guinier and Porod limits
- Size distribution of nanoparticles

In the following weeks:

- How to measure SAXS: instrumentation, practicalities
- Different material systems: periodic samples, self-assembling lipid systems (micelles, bilayers), proteins, polymer solutions, phase separated polymers: based on actual measurement data

Thank you for your attention!

