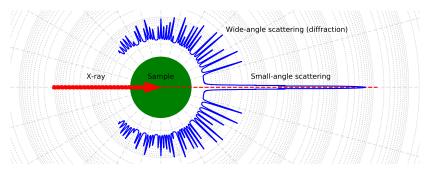
History of (small-angle) scattering

- ▶ "Even the ancient greeks..."
- Scattering: XVII-XIX. century (Huygens, Newton, Young, Fresnel...)
- ► X-rays: 1895 (Wilhelm Konrad Röntgen)
- ➤ X-ray diffraction on crystals: W.H. és W.L. Bragg (1912), M. von Laue, P. Debye, P. Scherrer...(-1930)
- ► First observation of small-angle scattering: P. Krishnamurti, B.E. Warren (kb. 1930)
- ▶ Mathematical formalism and theory of small-angle scattering: André Guinier, Peter Debye, Otto Kratky, Günther Porod, Rolf Hosemann, Vittorio Luzzati (1940-1960)

SAXS vs. WAXS

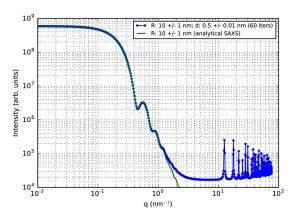
Principle of scattering: probe particles → interaction with the structure → deflection → detection → structure determination



- Measurement: the "intensity" of radiation deflected in different directions
- Strong forward scattering (logarithmic scale!)
- ▶ Wide-angle scattering: Bragg equation (cf. previous lecture)
- Small-angle scattering: . . .

Small- and wide-angle X-ray scattering

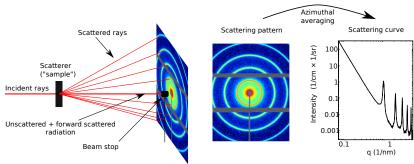
Scattering of a spherical nanocrystallite (simple cubic lattice)



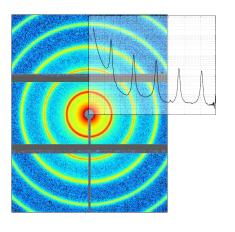
- ▶ Wide-angle scattering: crystal structure
- ▶ Small-angle scattering: the overall size of the crystallite
- ► Small-angle scattering is blind on the atomic level: equivalence of homogeneous and discrete atomic structures

Small-angle scattering

- Small-Angle X-ray Scattering SAXS
- ► *Elastic* scattering of X-rays on electrons
- ▶ Measurement: "intensity" versus the scattering angle
- ▶ Results: electron-density inhomogeneities on the 1-100 length scale
- ▶ But: indirect results, difficult to interpret (⑤)
- Typical experimental conditions:
 - ► Transmission geometry
 - High intensity, nearly point-collimated beam
 - Two-dimensional position sensitive detector

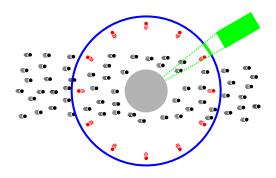


Scattering pattern – scattering curve



- Scattering pattern: matrix of incidence counts
 - Numerical values in the pixels: the number of the photons received
 - Each pixel has a corresponding scattering angle
- Scattering curve
 - ► The same information in a more tractable form
 - Obtained by azimuthally averaging the scattering pattern:
 - Grouping of pixels corresponding to the same scattering angle
 - 2. Averaging of the intensities
 - Dependent variable: intensity ("count rate")
 - Independent variable: scattering variable ("distance from the center")

Scattering cross-section



ightharpoons	The	sample	under	investigation	(scatterer)	
--------------	-----	--------	-------	---------------	-------------	--

Incident	particle	current	density:	$j_{in} =$	$N_{in}/(A \cdot t)$	
T		43.0		,	81 /.	

► Total scattered particle current:
$$I_{out} = N_{out}/t$$

▶ Scattering cross-section:
$$\Sigma \equiv I_{out}/J_{in} = A \cdot N_{out}/N_{in}$$

▶ differential scattering cross-section:
$$d\Sigma/d\Omega$$

▶ Normalized to unit sample volume:
$$\frac{d\sigma}{d\Omega} \equiv \frac{1}{V} \frac{d\Sigma}{d\Omega}$$

$$[{\rm cm}^{-2} \ {\rm s}^{-1}]$$

$$[s^{-1}]$$

$$[cm^2 sr^{-1}]$$

$$\left[\mathsf{cm}^{-1} \; \mathsf{sr}^{-1} \right]$$

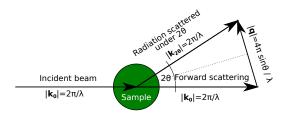
The scattering variable

▶ The natural variable of the intensity is the scattering vector:

$$ec{q} \equiv ec{k}_{2 heta} - ec{k}_0 \qquad \left[ec{s} \equiv ec{S}_{2 heta} - ec{S}_0 = ec{q}/(2\pi)
ight]$$

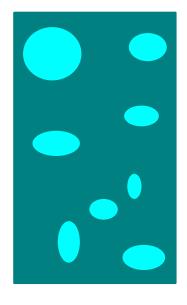
i.e. the vectorial difference of the wave vectors of the scattered and the incident radiation

- [Wave vector: points in the direction of wave propagation, magnitude is $2\pi/\lambda$]
- Physical meaning: the momentum acquired by the photon upon scattering (→ "momentum transfer")



- $lackbox{Magnitude: }q=|ec{q}|=4\pirac{\sin heta}{\lambda}\mathop{pprox}_{
 m small\ angles}4\pi heta/\lambda \qquad \qquad [s=2\sin heta/\lambda])$
- ▶ Bragg-equation: $q = 2\pi n/d$ $n \in \mathbb{Z}$ [s = n/d]

The scattering contrast



- X-rays are scattered by electrons
- Scattering contrast = relative electron density with respect to the average
- Only the relative electron density counts!
- Small contrast: weak scattering signal
 - Water: 333.3 e⁻/nm³ (homework to calculate)
 - ► SiO₂ nanoparticles: 660-800 e⁻/nm³
 - ► Proteins: 400-450 e⁻/nm³
- Determined by:
 - Mass density of the matter (e.g. solid copolimers)
 - Presence of elements with high atomic numbers
 - Choice of solvent (mean electron density)

Recapitulation of the basic quantities

Intensity: or differential scattering cross-section

- the proportion of the particles. . .
- ▶ ...incoming in a unit cross section...
- ▶ ...over unit time...
- ...onto a sample of unit volume...
- ... which is scattered in a given direction...
- ... under unit solid angle.

Scattering variable (q): or momentum transfer: characterizing the angle dependence.

- ▶ Magnitude $\propto \sin \theta \approx \theta$
- $\blacktriangleright \hbar \vec{q}$: the momentum acquired by the photon due to the interaction with the sample

Scattering contrast: scattering potential of given part of the sample in comparison with its environment

► This is the relative electron density in case of X-ray scattering

Connection between structure and scattering

Scattering on the inhomogeneities of the electron density ⇒ characterization of the structure with the relative electron density function:

$$\Delta \rho(\vec{r}) = \rho(\vec{r}) - \overline{\rho}$$

(in the following we omit Δ !)

▶ The amplitude of the scattered radiation:

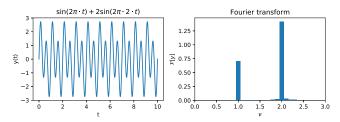
$$A(\vec{q}) = \iiint\limits_V \rho(\vec{r}) e^{-i\vec{q}\vec{r}} d^3\vec{r}$$

which is formally the Fourier transform of the electron density.

▶ Only the intensity can be measured: $I = |A|^2$

Detour: Fourier transform

Basic question: what is the frequency of a given periodic signal?



- ▶ Fourier transformation: determination of the frequency components
- Works for more components as well
- More sampling time: better frequency resolution (Nyquist-Shannon sampling theorem)
- ▶ Even more frequency components
- ▶ The relative weights of the frequency components is also given
- ▶ "Inside the black box": $F(\nu) = \int f(t)e^{-i\nu t}dt$
- ► Can be inverted (although...): $f(t) = \frac{1}{2\pi} \int F(\nu)e^{it\nu} d\nu$

The phase problem

- ► The Fourier transform is invertible (?!): the amplitude unambiguously describes the scattering structure
- Complex quantities:

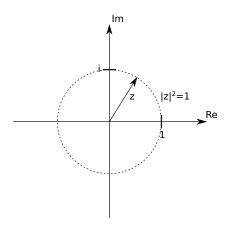
$$z = a + bi = Ae^{i\phi}$$

Absolute square (this is how we get the intensity):

$$|z|^2 = z \cdot z^* = Ae^{i\phi} \cdot Ae^{-i\phi} = A^2$$

- ▶ Where did the ϕ phase go?!
- Because the scattered amplitude cannot be measured, there is no chance to fully recover the structure just from scattering.
- Another problem: the intensity can only be measured in a subspace of the \vec{q} space: only an incomplete inversion of the Fourier transform can be done.

How big is this problem?



- ▶ The phase carries most of the information!
- ▶ The operation of taking the square root is ambiguous over the complex plane (there are ∞ complex numbers with |z| = 1)!

What can be done / Is this really a problem?

The scattering of vastly different structures can be undiscernible

- 1. Solution: determination of "robust" parameters (see later)
 - Guinier radius
 - Power-law exponent
 - Porod-volume

•

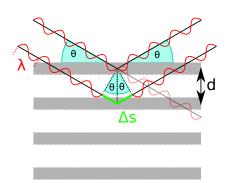
- 2. Solution: model fitting
 - Choosing the specimen from a model-specimen described by given parameters which best fits the scattering curve
 - ▶ If the model ensemble is narrow enough, the $\rho(\vec{r}) \leftrightarrow I(\vec{q})$ mapping can be unique
 - ▶ A priori knowledge, results of other experiments are indispensable!
- 3. "Guessing" the phase (crystallography) or measuring it (holography)

Structures which are compatible with the measured data

Structures which can be parametrized by the model

Bragg's law: a special case

- ► The sample is periodic (*d* repeat distance)
- \blacktriangleright θ : incidence and exit angle
- Constructive interference in the detector: the rays reflected from neighbouring planes reach the detector in phase
- ▶ Path difference: $\Delta s = n\lambda$ where $n \in \mathbb{N}$
- From simple geometry: $\Delta s = 2d \sin \theta$
- $ightharpoonup 2d\sin\theta = n\lambda$



Detour/recap: spherical coordinates

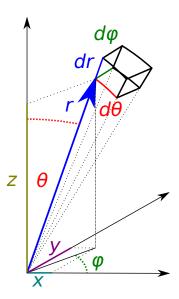
- ▶ Descartes: x, y, z
- ► Spherical:
 - $x = r \sin \theta \cos \varphi$,
 - $y = r \sin \theta \sin \varphi$,
 - $z = r \cos \theta$
- Infinitesimal volume:

$$dx\,dy\,dz = dV = r^2\sin\theta\,dr\,d\theta\,d\varphi$$

Integral:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) dx dy dz =$$

$$= \int_{-\infty}^{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r, \theta, \varphi) r^{2} \sin \theta dr d\theta d\varphi$$



Small-angle scattering of a sphere (I)

General formula of the scattered intensity:

$$I(\vec{q}) = \left| \iiint \rho(\vec{r}) e^{-i\vec{q}\vec{r}} d^3 \vec{r} \right|^2$$

Let us derive the (small-angle) scattering intensity of a sphere which has a radius R and ρ_0 homogeneous electron density inside!

Electron-density function of an isotropic object: $\rho(\vec{r}) = \rho(|\vec{r}|) = \rho(r)$.

The integral can be simpified in spherical coordinates:

$$I(\vec{q}) = \left| \int_0^{2\pi} d\phi \int_0^{\infty} dr \, r^2 \rho(r) \int_0^{\pi} \sin\theta \, d\theta \, e^{-i|\vec{q}| \cdot |\vec{r}| \cos\theta} \right|^2$$

where z has been chosen to be parallel with \vec{q} (can be done due to the spherical symmetry of $\rho(\vec{r})$)

Substitution of $u = \cos \theta$:

$$I(\vec{q}) = \left| \int_{0}^{2\pi} d\phi \int_{0}^{\infty} r^{2} \rho(r) dr \int_{-1}^{1} du \, e^{-iqru} \right|^{2}$$

Small-angle scattering of a sphere (II)

The innermost integral can be readily evaluated:

$$\int_{-1}^{1} \mathrm{d}u \, \mathrm{e}^{-iqru} = \left[\frac{1}{-iqr} \mathrm{e}^{-iqru} \right]_{-1}^{1}$$

Employing $e^{i\phi} = \cos \phi + i \sin \phi$:

$$\frac{1}{-iqr}\left[e^{-iqr}-e^{iqr}\right]=\frac{1}{iqr}\left[2i\sin\left(qr\right)\right]=\frac{2\sin\left(qr\right)}{qr}$$

which leads to

$$I(\vec{q}) = I(q) = (4\pi)^2 \left| \int_0^R \rho(r) r^2 \frac{\sin(qr)}{qr} dr \right|^2.$$

- ▶ The scattering intensity of an isotropic system is also isotropic: depends only on $|\vec{q}|$
- ► The scattering amplitude of an isotropic system (more precisely where $\rho(\vec{r}) = \rho(-\vec{r})$) is real

Small-angle scattering of a sphere (III)

The electron-density function of a homogeneous sphere is:

$$\rho(\vec{r}) = \begin{cases}
\rho_0 & \text{if } |\vec{r}| \leq R \\
0 & \text{otherwise.}
\end{cases}$$

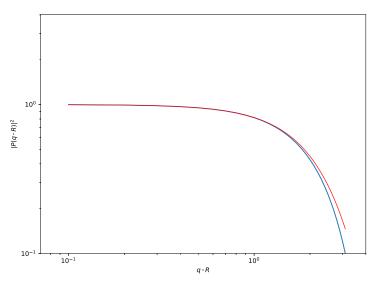
Evaluating the previous integral:

$$I_{g}(q) = \left(\frac{4\pi\rho_{0}}{q^{3}}\left(\sin(qR) - qR\cos(qR)\right)\right)^{2}$$

$$= \rho_{0}^{2} \left(\underbrace{\frac{4\pi R^{3}}{3}}_{V} \underbrace{\frac{3}{q^{3}R^{3}}\left(\sin(qR) - qR\cos(qR)\right)}_{P_{g}(qR)}\right)^{2}$$

▶ The scattered intensity scales with the 6th power of the linear size $(I \propto V^2 \propto R^6)$

Small-angle scattering of a sphere (IV)



- ► Log-log plotting is good ③
- qR < 1 approximation: $I \approx e^{-\frac{q^2R^2}{5}}$ (Guinier)

The Guinier approximation

- ▶ André Guinier: the low-q scattering of dilute nanoparticle suspensions follows a Gaussian curve
- ▶ Generally:

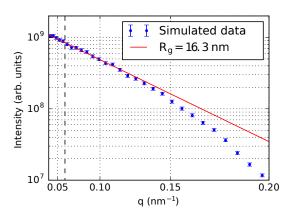
$$I(q\approx 0)=I_0e^{-\frac{q^2R_g^2}{3}}$$

Radius of gyration (or Guinier radius): describes the linear size of a scattering object. By definition:

$$R_g \equiv \sqrt{\frac{\iiint_V r^2 \rho(\vec{r}) \mathrm{d}^3 \vec{r}}{\iiint_V \rho(\vec{r}) \mathrm{d}^3 \vec{r}}}$$

- ▶ Connection between the shape parameters and R_g :
 - sphere: $R_g = \sqrt{3/5}R$
 - spherical shell: $R_g = R$
 - cylinder: $\sqrt{\frac{R^2}{2} + \frac{L^2}{12}}$
 - ► linear polymer chain: Nb²/6
 - **•** . . .

Guinier plot



- $I \approx I_0 e^{-\frac{q^2 R_g^2}{3}}$ $In I \approx In I_0 \frac{R_g^2}{3} q^2$
- ▶ $\ln I q^2$: first order polynomial
- Visual check on the validity of the Guinier approximation

The validity of the Guinier approximation

- The Guinier approximation holds for nearly monodisperse particulate systems too (see next slides)
- Nearly spherical particles: $qR_g \lesssim 3$
- Anisotropic particles: $qR_x \lesssim 0.7$
- ► Upturn at small *q* ("smiling Guinier"): attraction between the particles (aggregation)
- ▶ Downturn at small *q* ("frowning Guinier"): repulsive interaction between the particles
- More details will be given for protein scattering later...

André Guinier (1911 - 2000)

The effect of polydispersity

Multi-particle system:

$$\rho(\vec{r}) = \sum_{j} \rho_{j}(\vec{r} - \vec{R}_{j})$$

Scattering amplitude:

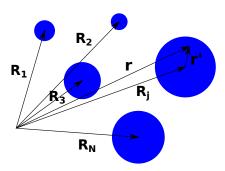
$$A(\vec{q}) = \sum_{j} A_{j}(\vec{q})$$
$$= \sum_{j} A_{j,0}(\vec{q}) e^{-i\vec{q}\vec{R}_{j}}$$

Intensity:

$$I(\vec{q}) = A(\vec{q})A^{*}(\vec{q}) = \sum_{i} \sum_{k} A_{j}(\vec{q})A_{k}^{*}(\vec{q})e^{i\vec{q}(\vec{R}_{k}-\vec{R}_{j})}$$

Shifting of the electron density function by \vec{R} :

$$A_{\mathsf{shifted}}(\vec{q}) = A_0(\vec{q}) e^{-i \vec{q} \vec{R}}$$



Multi-particle system

$$I(\vec{q}) = \sum_{j} \sum_{k} A_{j}(\vec{q}) A_{k}^{*}(\vec{q}) e^{i\vec{q}(\vec{R}_{k} - \vec{R}_{j})} = \underbrace{\sum_{j} I_{j}(\vec{q})}_{\text{incoherent}} + \underbrace{\sum_{j} \sum_{k \neq j} A_{j}(\vec{q}) A_{k}^{*}(\vec{q}) e^{i\vec{q}(\vec{R}_{k} - \vec{R}_{j})}}_{\text{interference term}}$$

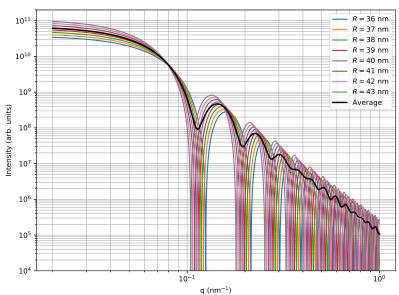
- Incoherent sum: the intensity of the distinct particles is summarized
- Cross-terms: interference from the correlated relative positions of the particles
- Special case: identical, spherically symmetric particles

$$I(q) =
ho_0^2 V^2 P_g(qR)^2 N \underbrace{\left\{1 + rac{2}{N} \sum_j \sum_{k>j} \cos\left(\vec{q}(\vec{R}_k - \vec{R}_j)\right)
ight\}}_{S(q)}$$

- ► Structure factor: depends only on the relative positions of the distinct particles but not on their shape
- ▶ Uncorrelated system: S(q) = 1. Otherwise the Guinier region is distorted!

Size distribution

There's no such thing as a fully monodisperse system.

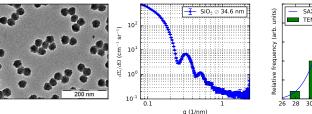


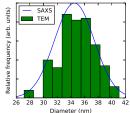
Scattering of a slightly polydisperse suspension of nanoparticles

Scattering of a dilute nanoparticle suspension:

$$I(q) = \int_0^\infty \underbrace{\mathcal{P}(R)}_{\text{size distribution}} \cdot \underbrace{\rho_0^2}_{\text{contrast}} \cdot \underbrace{V_R}^2 \cdot \underbrace{P^2(qR)}_{\text{form factor}} dR$$

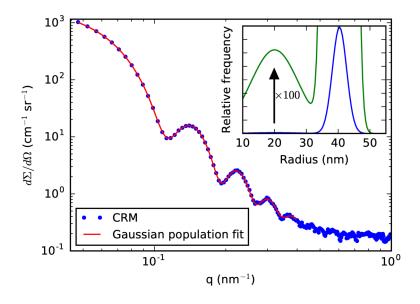
If the shape of the particles is known, the size distribution can be determined by fitting the scattering curve.





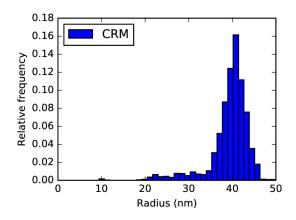
- ▶ Statistically significant ($\approx 10^9$ particles in 1 mm³)
- ► Accurate sizes with well-defined uncertainties (SI "traceability")

Bimodal nanoparticle distribution

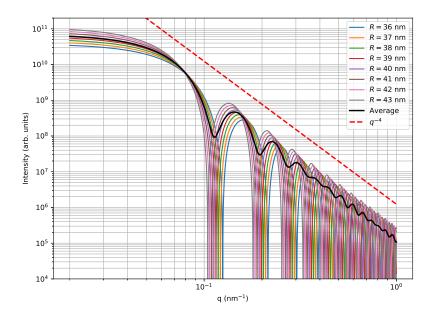


Model-independent approach

- ▶ The P(R) size distribution function is obtained in a histogram form.
- ► Large number of model parameters ⇒ danger of "overfitting"

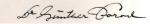


Power-law behaviour



The Porod region

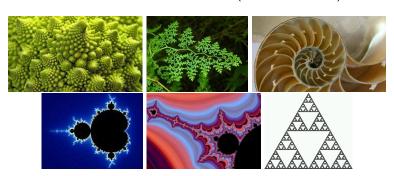
- Power-law decreases are frequently found in scattering curves: $I \propto q^{-\alpha}$.
- Particles with smooth surfaces: $I(q \to \infty) \propto \frac{S}{V} q^{-4}$: specific surface!
- Solutions of unbranched polymers:
 - Ideal solvent (Θ-solution): random walk following Gaussian statistics: $I(q) \propto q^{-2}$
 - ▶ Bad solvent: self-attracting random walk: $I(q) \propto q^{-3}$
 - Good solvent: self-avoiding random walk: $I(q) \propto q^{-3/5}$
- Surface and mass fractals...



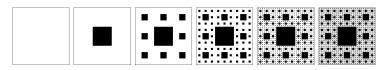
Günther Porod (1919 - 1984)

Detour: fractals

- ► Self-similar systems: showing the same shapes even in different magnifications
- ▶ Nanosystems with fractal properties:
 - Activated carbon
 - Porous minerals
 - Uneven surfaces
- ► Characterization: Hausdorff-dimension (fractal dimension)



Fractal dimension



- Measure the area of the Sierpińsky carpet with different unit lengths
- Connection between the unit length and the required unit areas to cover the carpet:

Length unit	1	1/3	1/9	 3^{-n}
Required unit areas	1	8	64	 8 ⁿ

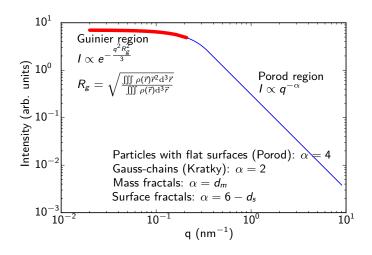
▶ A Hausdorff dimension: how the number of required unit areas (A) scales with the unit length (a)?

$$a = 1/3^n \to n = -\log_3 a$$
 $A = 8^n = 8^{-\log_3 a} = 8^{-\frac{\log_8 a}{\log_8 3}} = a^{\log_8 3} = a^{\frac{\ln 3}{\ln 8}} = a^{-d}$

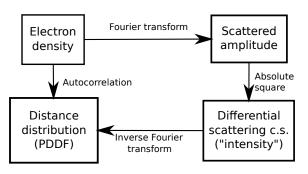
- ▶ The fractal dimension of the Sierpińsky carpet is $\ln 8 / \ln 3 \approx 1.8928 < 2$
- ► For a simple square:

 $A = a^{-2}$, i.e. the fractal dimension is the same as the Euclidean

Fractal dimension on the scattering curve

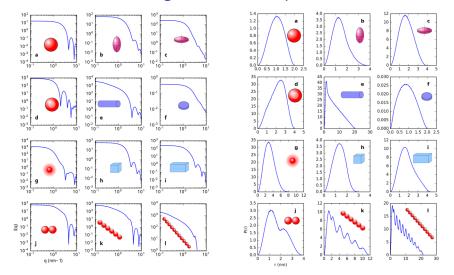


The pair density distribution function – back to the real space



- ► There is another route connecting the electron density and the scattered intensity
- ▶ The p(r) pair density distribution function (PDDF) is the self-correlation of the electron density.
- ▶ $p(r) = \mathcal{F}^{-1}[I(q)]$ real space information.
- Physical meaning: find all the possible point pairs inside the particle and make a histogram from their distances

The PDDFs of some geometrical shapes



Summary – Pros and cons of scattering experiments

Advantages

- Statistically significant average results
- ► Simple measurement principle
- Separation of length scales (SAXS is blind for atomic sizes)
- Accurate quantitative results, traceable to the definitions of the SI units of measurement

Disadvantages

- Nonintuitive, indirect measurement results → difficult interpretation
- Cannot be used on too complex systems
- Possible ambiguity of the determined structure (phase problem)
- Measures mean values: no means for getting results on structural forms present in low concentrations